Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34491796

RESUMO

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Assuntos
Fusarium , Tricotecenos , Grão Comestível/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia
2.
J Sci Food Agric ; 100(2): 863-873, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31646638

RESUMO

BACKGROUND: Wheat is the most important winter crop in the world, being affected by the presence of fungal, mainly those belonging to the Fusarium genus. Fusarium head blight (FHB) is a serious disease that causes important economic damage and quantitative/qualitative losses, with Fusarium graminearum and Fusarium poae being two of the most isolated species worldwide. The present study aimed to evaluate the interaction between F. graminearum and F. poae and the effects on disease parameters, grain quality and mycotoxin contamination on five wheat genotypes under field conditions during three growing seasons. RESULTS: Statistical differences between Fusarium treatments were found for disease parameters, grain quality and mycotoxin contamination during the 2014/2015 growing season. High values of incidence (58.00 ± 8.00%), severity (6.28 ± 1.51%) and FHB index (4.72 ± 1.35) were observed for F. graminearum + F. poae treatment. Regarding grain quality, the results showed that the degradation of different protein fractions depends on each Fusarium species: glutenins were degraded preferably by F. graminearum (-70.82%), gliadins were degraded preferably by F. poae (-29.42%), whereas both protein fractions were degraded when both Fusarium species were present (-60.91% and -16.51%, respectively). Significant differences were observed for mycotoxin contamination between genotypes, with Proteo being the most affected (DON = 12.01 ± 3.67 µg g-1 ). In addition, we report that 3-ADON predominated over 15-ADON in the three seasons evaluated. CONCLUSION: Variations in plant-pathogen interaction (Fusarium-wheat pathosystem) should be considered at least in years with favorable climatic conditions for FHB development, as a result of the potential impact of this disease on grain quality and mycotoxin contamination. © 2019 Society of Chemical Industry.


Assuntos
Fusarium/metabolismo , Micotoxinas/análise , Doenças das Plantas/microbiologia , Triticum/química , Triticum/microbiologia , Fusarium/classificação , Micotoxinas/metabolismo , Estações do Ano , Sementes/química , Sementes/microbiologia
3.
J Sci Food Agric ; 100(3): 1004-1011, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31646639

RESUMO

BACKGROUND: Barley (Hordeum vulgare L.) is one of the most important cereals worldwide, and its quality is affected by fungal contamination such as species of the genus Alternaria. No information is available about the occurrence of Alternaria mycotoxins in Argentinean barley grains, which is of concern, because they can be transferred into malt and beer. The aim of this study was to analyze the occurrence of alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) in malting barley grains from the main producing region of Argentina during the 2014 and 2015 growing seasons. RESULTS: The most frequent mycotoxin was AOH (64%), which was detected at higher levels (712 µg kg-1 ) compared with other studies, followed by TeA (37%, 1522 µg kg-1 ), while AME was present in five samples in the 2015 growing season only, with a mean of 4876 µg kg-1 . A similar frequency of mycotoxin occurrence was observed in both years (80.8 vs 85.3%), but more diverse contamination was found in 2015, which was characterized by lower accumulated precipitation. Nevertheless, AOH was more frequently found in 2014 than in 2015 (80.8 and 47.1% respectively). A negative correlation between AOH concentration and temperature was observed. The susceptibility of different barley varieties to mycotoxin accumulation varied with the mycotoxin, geographical location and meteorological conditions. CONCLUSION: The results obtained in the present work represent a tool for risk assessment of exposition to these mycotoxins and could be used by food safety authorities to determine the need for their regulation. Furthermore, the establishment of a hazard analysis and critical control point (HACCP) system to minimize fungal and mycotoxin contamination in barley from farm to processing could be apply to ensure food safety. © 2019 Society of Chemical Industry.


Assuntos
Alternaria/metabolismo , Hordeum/microbiologia , Micotoxinas/análise , Argentina , Contaminação de Alimentos/análise , Manipulação de Alimentos , Hordeum/química , Lactonas/análise , Micotoxinas/metabolismo , Sementes/química , Sementes/microbiologia
4.
Rev Argent Microbiol ; 50(2): 189-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29079330

RESUMO

Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is one of the major lepidopteran pests defoliating soybeans (Glycine max Merrill) in Argentina. The combined use of chemical insecticides and entomopathogenic fungi is a promising pest-control option to minimize adverse chemical effects. In this work, we evaluated the interactions between five insecticides-two being considered biorational-and five fungal entomopathogenic strains under laboratory conditions in order to determine the possible usefulness of combinations of these agents against R. nu. The insecticides were tested for compatibility at four doses by in vitro bioassay and for the lethality of R. nu by inoculations at three doses. Fungal strains were applied at 1×108, 1×106, and 1×104conidia/ml. The combinations of those insecticides with Beauveria bassiana (LPSc 1067, LPSc 1082, LPSc 1098), Metarhizium anisopliae (LPSc 907), and Metarhizium robertsii (LPSc 963) caused higher R. nu-larval mortalities than any of the individual agents alone. We observed significant differences in the in vitro conidial viability, vegetative growth, and conidia production of the five strains of entomopathogenic fungi exposed to different doses of the chemical insecticides. The combination gamma-cyhalothrin-LPSc-1067 caused the highest percent mortality of R. nu larvae, with synergism occurring between the two agents at 50% and 25% of the maximum field doses.


Assuntos
Glycine max , Inseticidas , Lepidópteros , Controle Biológico de Vetores , Animais , Argentina , Beauveria , Metarhizium
5.
Rev Argent Microbiol ; 48(1): 86-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26766627

RESUMO

The morphologic features of Talaromyces udagawae Stolk and Samson are here described and illustrated. This teleomorphic Ascomycota fungus was isolated from soil obtained in Buenos Aires province (Argentina) from beneath a human cadaver in an advanced state of decomposition. After washing and serial dilution of the soil along with moist-chamber techniques for fungal cultivation, T. udagawae formed very restricted colonies of bright yellow color on different growth media with 8-ascospored asci. The ascospores were ellipsoidal and ornamented. The anamorphic state was not observed. Molecular-genetic techniques identified the species. The present record is the first of the species in Argentina, pointing it as a tool to identify soils where cadaver decomposition occurs.


Assuntos
Microbiologia do Solo , Talaromyces/isolamento & purificação , Argentina , Cadáver , Humanos
6.
Rev Argent Microbiol ; 48(2): 154-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27045749

RESUMO

Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests.


Assuntos
Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Glycine max/microbiologia , Zea mays/microbiologia , Argentina , Biodiversidade , Fazendas , Especificidade de Órgãos , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Estudos de Amostragem , Especificidade da Espécie
7.
Plant Dis ; 98(12): 1733-1738, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30703893

RESUMO

Fusarium poae is a relatively weak pathogen with increasing importance in cereal grains, principally due to its capacity to produce several mycotoxins. In this study, we evaluated the pathogenicity and toxin accumulation of individual F. poae isolates on wheat and barley under natural conditions for 3 years. Analysis of variance demonstrated significant differences for year-genotype, year-isolate, genotype-isolate, and year-genotype-isolate interactions for both incidence and disease severity. Based on contrast analysis, 'Apogee' was more susceptible than the other wheat genotypes, wheat genotypes were more susceptible than barley genotypes, durum wheat genotypes were more susceptible than bread wheat genotypes, and barley genotype 'Scarlett' had greater symptom development per spike than the other barley genotypes. Neither HT-2 nor T-2 toxins were detected in the grain samples. However, high levels of nivalenol were found in both wheat and barley samples. The increased reported isolation of F. poae from wheat and barley and the high capacity of this fungus to produce nivalenol underlie the need for more studies on F. poae-host interactions, especially for barley.

8.
Rev Argent Microbiol ; 46(1): 41-4, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-24721273

RESUMO

One of the most important diseases in cereal crops is Fusarium head blight, being Fusarium graminearum the main etiological agent. This fungus has the ability to produce a wide spectrum and quantity of toxins, especially deoxynivalenol (DON). During the last crop season (2012-2013) the climatic conditions favored Fusarium colonization. The objective of this work was to determine the presence of this fungus as well as the DON content in 50 wheat grain samples. Our results showed that 80% of the samples were contaminated with Fusarium graminearum. Twenty four percent (24%) of the samples contained ≥ 1µg/g DON, 26% ranged from 0,5 and 0,99µg/g, and the remaining 50% had values lower than 0,5µg/g. Correlation was found between the presence of Fusarium graminearum and DON. It is necessary to establish DON limit values in wheat grains for human consumption.


Assuntos
Microbiologia de Alimentos , Fusarium/isolamento & purificação , Triticum/microbiologia , Argentina , DNA Fúngico/análise , Microbiologia de Alimentos/normas , Fusarium/metabolismo , Humanos , Concentração Máxima Permitida , Doenças das Plantas/microbiologia , Sementes/química , Sementes/microbiologia , Especificidade da Espécie , Tricotecenos/análise , Triticum/química
9.
Pest Manag Sci ; 80(7): 3578-3589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450978

RESUMO

BACKGROUND: Plant defense elicitors are valuable tools in sustainable agriculture, providing an environmentally friendly and effective means of enhancing plant defense and promoting plant health. Fusarium head blight (FHB) is one of the most important fungal diseases of cereal crops worldwide. The PSP1 is a novel biopesticide formulated based on an elicitor, the extracellular protein AsES, from the fungus Sarocladium strictum. The present work aimed to evaluate the effectiveness of PSP1 in controlling FHB under field conditions. Experiments were conducted during three consecutive growing seasons (2019, 2020, and 2021). Three biostimulant treatments were tested in different physiological stages (from late tillering to heading stage), and FHB inoculations were performed at anthesis. Disease parameters, seed parameters, grain yield, and grain quality parameters were evaluated. RESULTS: Depending on the year and the genotype, reductions in disease incidence (up to 11%) and disease severity (up to 5%) were reported, although these differences could not be attributed to the use of the PSP1 biostimulant. Occasional improvements in seed parameters and grain quality were observed, suggesting that early treatments could work better than late treatments, probably due to early activation/priming of defense response mechanisms. However, more studies are deemed necessary. CONCLUSION: The use of PSP1 biostimulant in commercial wheat crops could be a biological alternative or complement to traditional chemical fungicides to manage FHB. The reduced environmental impact and the potential benefits in grain yield and quality are other reasons that can generate new adherents of this technology in worldwide agriculture systems in the coming years. © 2024 Society of Chemical Industry.


Assuntos
Grão Comestível , Fusarium , Doenças das Plantas , Triticum , Fusarium/fisiologia , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Grão Comestível/microbiologia , Grão Comestível/crescimento & desenvolvimento , Hypocreales/fisiologia , Agentes de Controle Biológico/farmacologia
10.
Rev Biol Trop ; 60(2): 833-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23894949

RESUMO

Tolypocladium cylindrosporum is an entomopathogenic fungi that has been studied as a biological control agent against insects of several orders. The fungus has been isolated from the soil as well as from insects of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera. In this study, we analyzed the ability of a strain of T cylindrosporum, isolated from soil samples taken in Tierra del Fuego, Argentina, to produce hydrolytic enzymes, and to study the relationship of those activities to the fungus pathogenicity against pest aphids. We have made the traditional and molecular characterization of this strain of T cylindrosporum. The expression of hydrolase activity in the fungal strain was estimated at three incubation temperatures (4 degreeC, 12 degreeC and 24 degreeC), on different agar media supplemented with the following specific substrates: chitin azure, Tween 20, casein, and urea for chitinase, lipase, protease, and urease activity, respectively. The hydrolytic-enzyme activity was estimated qualitatively according to the presence of a halo of clarification through hydrolase action, besides was expressed semi-quantitatively as the ratio between the hydrolytic-halo and colony diameters. The pathogenicity of the fungus was tested on adults of the aphid Rhopalosiphum padi at three temperatures of incubation (4 degree C, 12 degree C and 24 degree C). The suspension was adjusted to a concentration of 1x10(7) conidia/ml. In pathogenicity assays at seven days post-inoculation, the fungus caused the mortality of adults of Ropalosiphum padi at different temperatures also showed a broad ability to grow on several agar-culture media, supplemented with different carbon sources at the three incubation temperatures tested. Although, the growth was greater with higher incubation temperatures (with maximum levels at 24 degreeC), the fungus reached similar colony diameters after 15 days of incubation on the medium supplemented with Tween 20 at the lower two incubation temperatures of 4 degreeC or 12 degreeC. In accordance with the results on colony diameters, the fungus revealed an ability to degrade casein, chitin derivatives, Tween 20, and urea as evidenced by the appearance of a halo around the fungal colony. Because of its origin and temperature tolerance, this Argentine strain has great potential for use as a biocontrol agent for insect pest control in cold and temperate environments.


Assuntos
Afídeos/microbiologia , Hidrolases/biossíntese , Hypocreales/enzimologia , Hypocreales/patogenicidade , Animais , Argentina , Hypocreales/isolamento & purificação , Controle Biológico de Vetores/métodos , Microbiologia do Solo
11.
Front Microbiol ; 13: 885978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923405

RESUMO

Recent improvements in microbiology and molecular epidemiology were largely stimulated by whole- genome sequencing (WGS), which provides an unprecedented resolution in discriminating highly related genetic backgrounds. WGS is becoming the method of choice in epidemiology of fungal diseases, but its application is still in a pioneer stage, mainly due to the limited number of available genomes. Fungal pathogens often belong to complexes composed of numerous cryptic species. Detecting cryptic diversity is fundamental to understand the dynamics and the evolutionary relationships underlying disease outbreaks. In this study, we explore the value of whole-genome SNP analyses in identification of the pandemic pathogen Fusarium graminearum sensu stricto (F.g.). This species is responsible for cereal diseases and negatively impacts grain production worldwide. The fungus belongs to the monophyletic fungal complex referred to as F. graminearum species complex including at least sixteen cryptic species, a few among them may be involved in cereal diseases in certain agricultural areas. We analyzed WGS data from a collection of 99 F.g. strains and 33 strains representing all known cryptic species belonging to the FGSC complex. As a first step, we performed a phylogenomic analysis to reveal species-specific clustering. A RAxML maximum likelihood tree grouped all analyzed strains of F.g. into a single clade, supporting the clustering-based identification approach. Although, phylogenetic reconstructions are essential in detecting cryptic species, a phylogenomic tree does not fulfill the criteria for rapid and cost-effective approach for identification of fungi, due to the time-consuming nature of the analysis. As an alternative, analysis of WGS information by mapping sequence data from individual strains against reference genomes may provide useful markers for the rapid identification of fungi. We provide a robust framework for typing F.g. through the web-based PhaME workflow available at EDGE bioinformatics. The method was validated through multiple comparisons of assembly genomes to F.g. reference strain PH-1. We showed that the difference between intra- and interspecies variability was at least two times higher than intraspecific variation facilitating successful typing of F.g. This is the first study which employs WGS data for typing plant pathogenic fusaria.

12.
Int J Food Microbiol ; 357: 109367, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34482184

RESUMO

Alternaria is one of the main fungal genera affecting the quality of barley grains. In this study, a polyphasic approach was carried out to characterise the Alternaria population infecting different cultivars of barley grains from the major producing regions of Argentina in the 2014 and 2015 seasons. Its relationship with Fusarium and correlations between predominant species, barley cultivars, and climatic conditions in the growing regions were evaluated. Alternaria incidence exceeded that of Fusarium in all the barley samples and was higher in the drier season (21% in 2014 and 42% in 2015 vs. 6% and 4%, respectively). The main Alternaria species-groups identified were present in both growing seasons in similar frequencies (A. tenuissima sp.-grp., 83.4% in 2014 and 81.7% in 2015; A. infectoria sp.-grp., 11.7% in 2014 and 11.3% in 2015). The dominant Alternaria species-group isolated and identified based on morphological characteristics, DNA sequencing, and metabolite profile was A. tenuissima (72.9%), followed by A. infectoria (14.6%). An association between their frequency and field temperature was observed; A. tenuissima sp.-grp. was more frequent in northern localities, where higher temperatures were registered, while the opposite was observed for A. infectoria sp.-grp. A smaller percentage of A. arborescens sp.-grp. (5%), A. alternata sp.-grp. (3.9%) and A. vaccinii (1.4%) were also identified. Both secondary metabolite profiles and phylogenetic analysis were useful to distinguish isolates from Alternaria section Alternaria and section Infectoriae. Regarding metabolite profiles, alternariol was the most frequent compound produced by isolates of the section Alternaria. Infectopyrones and novae-zelandins were produced by most of the isolates from section Infectoriae. The barley cultivars analysed in this study did not show a particular susceptibility regarding the Alternaria population composition, except for Andreia, which presented the highest frequency of contamination with A. tenuissima sp.-grp. The rest of the cultivars, when grown in different regions, showed different proportion of the Alternaria sp.-grps., suggesting that other factors were determinant in their distribution. The results obtained in the present study will be a valuable tool for health authorities to assess the need for regulations on Alternaria mycotoxins, given the high incidence of Alternaria spp. in barley and the diversity of metabolites that might contaminate the grains.


Assuntos
Fusarium , Hordeum , Micotoxinas , Alternaria , Filogenia
13.
Front Microbiol ; 11: 1002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528440

RESUMO

Much of the mitogenome variation observed in fungal lineages seems driven by mobile genetic elements (MGEs), which have invaded their genomes throughout evolution. The variation in the distribution and nucleotide diversity of these elements appears to be the main distinction between different fungal taxa, making them promising candidates for diagnostic purposes. Fungi of the genus Fusarium display a high variation in MGE content, from MGE-poor (Fusarium oxysporum and Fusarium fujikuroi species complex) to MGE-rich mitogenomes found in the important cereal pathogens F. culmorum and F. graminearum sensu stricto. In this study, we investigated the MGE variation in these latter two species by mitogenome analysis of geographically diverse strains. In addition, a smaller set of F. cerealis and F. pseudograminearum strains was included for comparison. Forty-seven introns harboring from 0 to 3 endonucleases (HEGs) were identified in the standard set of mitochondrial protein-coding genes. Most of them belonged to the group I intron family and harbored either LAGLIDADG or GIY-YIG HEGs. Among a total of 53 HEGs, 27 were shared by all fungal strains. Most of the optional HEGs were irregularly distributed among fungal strains/species indicating ancestral mosaicism in MGEs. However, among optional MGEs, one exhibited species-specific conservation in F. culmorum. While in F. graminearum s.s. MGE patterns in cox3 and in the intergenic spacer between cox2 and nad4L may facilitate the identification of this species. Thus, our results demonstrate distinctive traits of mitogenomes for diagnostic purposes of Fusaria.

14.
Mycopathologia ; 168(1): 41-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19306112

RESUMO

Pseudocercospora griseola is the causal agent of angular leaf spot of common bean (ALS). It has undergone parallel coevolution with its host and two major groups have been defined, "Andean" (P. griseola f. griseola) and "Mesoamerican" (P. griseola f. mesoamericana). The aim of this study was to analyze the nature and the level of the dark pigment synthesized by the representatives of each group. After 21 days of incubation on potato dextrose agar medium, P. griseola f. griseola isolate S3b developed colonies with diameters of 17.5 +/- 1.3 mm and concentric rings of pigmentation. Isolate T4 of P. griseola f. mesoamericana presented smaller colonies (9.9 +/- 0.3 mm) with a uniform dark-gray color. Both isolates, S3b and T4, produced the same pigment, a 1,8-dihydroxynaphthalene-melanin, although different in quantity and structural features as suggested by the IR spectrum. The P. griseola f. griseola isolate S3b had a higher growth rate and melanin content as well as smaller sensitivity to melanin synthesis inhibitors compared to the isolate T4 of P. griseola f. mesoamericana. These results suggest a possible link between melanin and growth in P. griseola.


Assuntos
Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Melaninas/biossíntese , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Meios de Cultura/química , Naftóis , Pigmentos Biológicos/biossíntese , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Toxins (Basel) ; 10(2)2018 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439459

RESUMO

Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012-2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 µg/g of DON and 7.71 µg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 µg/g, with 44% exceeding the maximum limits (average of 5.24 µg/g); 29% contained NIV at an average of 2.36 µg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina.


Assuntos
Grão Comestível/química , Grão Comestível/microbiologia , Contaminação de Alimentos/análise , Fusarium/isolamento & purificação , Hordeum/microbiologia , Tricotecenos/análise , Argentina , Monitoramento Ambiental
16.
Front Plant Sci ; 9: 844, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087681

RESUMO

In this work, we present a novel biostimulant for sustainable crop disease management, PSP1, based on the plant defense-elicitor AsES, an extracellular protease produced by the strawberry fungal pathogen Acremonium strictum. Fungal fermentation conditions and downstream processing were determined to maximize extracellular protein production, product stability and a high plant defense-eliciting activity, as monitored by anthracnose resistance in supernatant-treated strawberry plants subsequently infected with a virulent strain of Colletotrichum acutatum. Fermentation batches were shown to reduce anthracnose development by 30-60% as compared to infected non-treated plants. Product formulation was shown to be stable for 6 months when stored at temperatures up to 45°C and toxicological tests showed that PSP1 was harmless to beneficial organisms and non-toxic to mammalian species at concentrations 50 times higher than those used in plant experiments. Furthermore, disease protection studies using dilutions of PSP1 indicated that there is a minimum threshold protease activity needed to induce pathogen defense in strawberry and that this induction effect is dose-independent. A significant characteristic of PSP1 is its broad-range protection against different diseases in various crop species. In soybean, PSP1 reduced the symptomatology by 70% of Corynespora cassiicola, etiological agent of the target spot. This protection effect was similar to the commercial inducer BION 500 WG based on BTH, and both products were shown to induce an oxidative burst and up-regulated PR1-gene expression in soybean. Furthermore, a double PSP1-treatment on greenhouse-grown sugarcane plants provided protection against bacterial red stripe disease caused by Acidovorax avenae and a double foliar application of PSP1 on field-grown wheat plants significantly increased resistance against Fusarium graminearum, causal agent of head blight disease, manifested mainly in an increased seed germination rate. In summary, these disease protection studies demonstrated an effective control against both bacterial and fungal pathogens in both monocot and dicot crop species, which together with its low production cost, effectiveness at low concentrations, long shelf-life, tolerance to high temperatures, harmlessness to non-target organisms and simple handling and application, make PSP1 a very promising candidate for effective and sustainable disease management in many crop species.

17.
Fungal Biol ; 121(10): 841-848, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28889908

RESUMO

Fusarium poae has been considered as a minor species among those that cause the FHB disease but in recent years several researchers have documented a high frequency of occurrence in several crops. We evaluated the ability of F. poae to produce symptoms in A. thaliana leaves. Moreover, we analyzed the defense of A. thaliana against F. poae using SA, JA, and ET mutants and we monitored the expression level of genes involved in the main signaling pathways related to plant defense. Symptoms were observed in the inoculated leaves demonstrating the ability of F. poae to infect A. thaliana leaves. Moreover, the npr1-1 mutants presented low symptoms compared to Col-0, etr2-1, and coi1-1 and that the coi1-1 mutant was the most susceptible genotypes followed by etr2-1 genotypes. The RT-PCR revealed that PDF1.2, CHI/PR3, and ERF1, three important JA-ET responsive genes and NPR1 and PR1, which are regulated by SA signaling, were expressed upon F. poae inoculation. Our results suggest that JA and ET could play a key role in Arabidopsis leaves defense against F. poae representing the first evaluation of the response of the main A. thaliana phytohormones involved in plant defense in the presence of F. poae.


Assuntos
Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Fusarium/fisiologia , Oxilipinas/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Fúngico/isolamento & purificação , Resistência à Doença/fisiologia , Fusarium/classificação , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Folhas de Planta/microbiologia , RNA Fúngico/isolamento & purificação , Transdução de Sinais/genética
18.
Int J Food Microbiol ; 257: 206-215, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28672174

RESUMO

Small-spored Alternaria have been isolated from a wide variety of food crops, causing both economic losses and human health risk due to the metabolites produced. Their taxonomy has been discussed widely, but no scientific consensus has been established in this field to date. Argentina is a major exporter of agricultural products, so it is essential to thoroughly understand the physiological behaviour of this pathogen in a food safety context. Thus, the objective of this work was to characterize small-spored Alternaria spp. obtained from tomato fruits, pepper fruits, wheat grains and blueberries from Argentina by a polyphasic approach involving metabolomic and phylogenetic analyses based on molecular and morphological characters. Morphological analysis divided the population studied into three groups; A. arborescens sp.-grp., A. tenuissima sp.-grp., and A. alternata sp.-grp. However, when these characters were simultaneously analysed with molecular data, no clearly separated groups were obtained. Haplotype network and phylogenetic analysis (both Bayesian and maximum parsimony) of a conserved region yielded the same result, suggesting that all isolates belong to the same species. Furthermore, no correlation could be established between morphological species-groups and a metabolite or group of metabolites synthesized. Thus, the whole set of analyses carried out in the present work supports the hypothesis that these small-spored Alternaria isolates from food belong to the same species. Identification at species level through classical morphology or modern molecular techniques does not seem to be a useful tool to predict toxicological risk in food matrices. The detection of any small-spored Alternaria from Section Alternaria (D.P. Lawr., Gannibal, Peever & B.M. Pryor 2013) in food implies a potential toxicological risk.


Assuntos
Alternaria/isolamento & purificação , Mirtilos Azuis (Planta)/microbiologia , Frutas/microbiologia , Piper nigrum/microbiologia , Solanum lycopersicum/microbiologia , Triticum/microbiologia , Verduras/microbiologia , Alternaria/classificação , Alternaria/genética , Argentina , Teorema de Bayes , DNA Fúngico/genética , Filogenia , Poligalacturonase/genética , Metabolismo Secundário , Esporos Fúngicos
19.
PeerJ ; 5: e2992, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28229023

RESUMO

Type B trichothecenes, which pose a serious hazard to consumer health, occur worldwide in grains. These mycotoxins are produced mainly by three different trichothecene genotypes/chemotypes: 3ADON (3-acetyldeoxynivalenol), 15ADON (15-acetyldeoxynivalenol) and NIV (nivalenol), named after these three major mycotoxin compounds. Correct identification of these genotypes is elementary for all studies relating to population surveys, fungal ecology and mycotoxicology. Trichothecene producers exhibit enormous strain-dependent chemical diversity, which may result in variation in levels of the genotype's determining toxin and in the production of low to high amounts of atypical compounds. New high-throughput DNA-sequencing technologies promise to boost the diagnostics of mycotoxin genotypes. However, this requires a reference database containing a satisfactory taxonomic sampling of sequences showing high correlation to actually produced chemotypes. We believe that one of the most pressing current challenges of such a database is the linking of molecular identification with chemical diversity of the strains, as well as other metadata. In this study, we use the Tri12 gene involved in mycotoxin biosynthesis for identification of Tri genotypes through sequence comparison. Tri12 sequences from a range of geographically diverse fungal strains comprising 22 Fusarium species were stored in the ToxGen database, which covers descriptive and up-to-date annotations such as indication on Tri genotype and chemotype of the strains, chemical diversity, information on trichothecene-inducing host, substrate or media, geographical locality, and most recent taxonomic affiliations. The present initiative bridges the gap between the demands of comprehensive studies on trichothecene producers and the existing nucleotide sequence databases, which lack toxicological and other auxiliary data. We invite researchers working in the fields of fungal taxonomy, epidemiology and mycotoxicology to join the freely available annotation effort.

20.
Toxins (Basel) ; 8(11)2016 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-27845742

RESUMO

Recent studies on a field population of F. graminearum sensu stricto from Argentina revealed an atypical panel of strains identified through PCR genotyping as 15ADON genotypes, but producing high levels of 3ADON. Based on representative strain CBS 139514, we asked if the discrepancy between the trichothecene genotype and chemotype might result from an inter-chemotype recombination of the chemotype-determining genes. To answer this, we sequenced the complete core Tri gene cluster (around 30,200 bp) from this strain and compared its sequence to sequence data of typical type B trichothecene genotypes/chemotypes. Sequence alignment showed that CBS 139514 has an identical sequence within the entire core Tri cluster to the 15ADON genotype. The revealed discrepancy underlines the need for using both molecular and chemical methods for reliable characterization of toxigenic strains of Fusarium.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Tricotecenos/biossíntese , Tricotecenos/genética , Argentina , DNA Fúngico/análise , Genes Fúngicos , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA