Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Care Med ; 44(5): e264-77, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26588829

RESUMO

OBJECTIVE: Hemorrhagic shock-induced tissue hypoxia induces hyperinflammation, ultimately causing multiple organ failure. Hyperoxia and hypothermia can attenuate tissue hypoxia due to increased oxygen supply and decreased demand, respectively. Therefore, we tested the hypothesis whether mild therapeutic hypothermia and hyperoxia would attenuate postshock hyperinflammation and thereby organ dysfunction. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Thirty-six Bretoncelles-Meishan-Willebrand pigs of either gender. INTERVENTIONS: After 4 hours of hemorrhagic shock (removal of 30% of the blood volume, subsequent titration of mean arterial pressure at 35 mm Hg), anesthetized and instrumented pigs were randomly assigned to "control" (standard resuscitation: retransfusion of shed blood, fluid resuscitation, norepinephrine titrated to maintain mean arterial pressure at preshock values, mechanical ventilation titrated to maintain arterial oxygen saturation > 90%), "hyperoxia" (standard resuscitation, but FIO2, 1.0), "hypothermia" (standard resuscitation, but core temperature 34°C), or "combi" (hyperoxia plus hypothermia) (n = 9 each). MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of and 12 and 22 hours after hemorrhagic shock, we measured hemodynamics, blood gases, acid-base status, metabolism, organ function, cytokine production, and coagulation. Postmortem kidney specimen were taken for histological evaluation, immunohistochemistry (nitrotyrosine, cystathionine γ-lyase, activated caspase-3, and extravascular albumin), and immunoblotting (nuclear factor-κB, hypoxia-inducible factor-1α, heme oxygenase-1, inducible nitric oxide synthase, B-cell lymphoma-extra large, and protein expression of the endogenous nuclear factor-κB inhibitor). Although hyperoxia alone attenuated the postshock hyperinflammation and thereby tended to improve visceral organ function, hypothermia and combi treatment had no beneficial effect. CONCLUSIONS: During resuscitation from near-lethal hemorrhagic shock, hyperoxia attenuated hyperinflammation, and thereby showed a favorable trend toward improved organ function. The lacking efficacy of hypothermia was most likely due to more pronounced barrier dysfunction with vascular leakage-induced circulatory failure.


Assuntos
Hiperóxia , Hipotermia Induzida/métodos , Ressuscitação/métodos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Animais , Coagulação Sanguínea/fisiologia , Gasometria , Citocinas/metabolismo , Feminino , Hidratação , Hemodinâmica , Immunoblotting , Imuno-Histoquímica , Rim/patologia , Masculino , Estudos Prospectivos , Distribuição Aleatória , Respiração Artificial , Suínos
2.
Intensive Care Med Exp ; 5(1): 17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28321823

RESUMO

BACKGROUND: Downregulation of the hydrogen sulfide (H2S)-producing enzymes cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and/or 3-mercaptopyruvate sulfurtransferase (3-MST) is associated with chronic cardiovascular pathologies. Nevertheless, equivocal data are available on both the expression and function of these enzymes in coronary arteries (CA). We recently reported that atherosclerotic pigs subjected to sepsis developed impaired cardiac function, which coincided with decreased myocardial CSE expression and increased nitrotyrosine formation. To define the endogenous source(s) of H2S in the CA, we studied the expression of CBS, CSE, or 3-MST in the CA of pigs subjected to septic shock with/without pre-existing cardiovascular co-morbidity. METHODS: Anesthetized and instrumented FBM "familial hypercholesterolemia Bretoncelles Meishan" pigs with high-fat diet-induced hypercholesterolemia and atherosclerosis were subjected to polymicrobial septic shock, or sham procedure, and subsequent intensive care therapy for 24 h. Young German domestic pigs were used as naïve controls. CSE, CBS, 3-MST, HO-1, eNOS, and nitrotyrosine expression was quantified by immunohistochemistry of formalin-fixed paraffin sections. RESULTS: FBM pigs, in the absence of septic shock, showed decreased CSE expression in the media. This decrease became more pronounced after sepsis. The expression pattern of HO-1 resembled the pattern of CSE expression. CBS protein was not detected in the media of any of the CA examined but was localized to the adventitia and only in the atheromatous plaques containing foam cells of the CA, in regions that also displayed abundant nitrotyrosine formation. The CBS expression in the adventitia was not associated with nitrotyrosine formation. 3-MST expression was not found in any of the CA samples. CONCLUSIONS: We hypothesize that (i) the reduced CSE expression in FBM pigs may contribute to their cardiovascular disease phenotype and moreover (ii) the further decrease in CA CSE expression in sepsis may contribute to the sepsis-associated cardiac dysfunction.

3.
Shock ; 48(5): 564-570, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28472012

RESUMO

We previously demonstrated beneficial effects of 22 h of hyperoxia following near-lethal porcine hemorrhagic shock, whereas therapeutic hypothermia was detrimental. Therefore, we investigated whether shorter exposure to hyperoxia (12 h) would still improve organ function, and whether 12 h of hypothermia with subsequent rewarming could avoid deleterious effects after less severe hemorrhagic shock.Twenty-seven anesthetized and surgically instrumented pigs underwent 3 h of hemorrhagic shock by removal of 30% of the blood volume and titration of the mean arterial blood pressure (MAP) to 40 mm Hg. Post-shock, pigs were randomly assigned to control, hyperoxia (FIO2 100% for 12 h) or hypothermia group (34°C core temperature for 12 h with subsequent rewarming). Before, at the end of shock, after 12 and 23 h of resuscitation, data sets comprising hemodynamics, blood gases, and parameters of inflammation and organ function were acquired. Postmortem, kidney samples were collected for immunohistochemistry and western blotting.Hyperoxia exerted neither beneficial nor detrimental effects. In contrast, mortality in the hypothermia group was significantly higher compared with controls (67% vs. 11%). Hypothermia impaired circulation (MAP 64 (57;89) mm Hg vs. 104 (98; 114) mm Hg) resulting in metabolic acidosis (lactate 11.0 (6.6;13.6) mmol L vs. 1.0 (0.8;1.5) mmol L) and reduced creatinine clearance (26 (9;61) mL min vs. 77 (52;80) mL min) compared to the control group after 12 h of resuscitation. Impaired kidney function coincided with increased renal 3-nitrotyrosine formation and extravascular albumin accumulation.In conclusion, hyperoxia proved to be safe during resuscitation from hemorrhagic shock. The lacking organ-protective effects of hyperoxia compared to resuscitation from near-lethal hemorrhage suggest a dependence of the effectiveness of hyperoxia from shock severity. In line with our previous report, therapeutic hypothermia (and rewarming) was confirmed to be detrimental most likely due to vascular barrier dysfunction.


Assuntos
Hiperóxia/terapia , Choque Hemorrágico/terapia , Animais , Gasometria , Hemodinâmica/fisiologia , Hiperóxia/metabolismo , Hipotermia Induzida , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/fisiologia , Choque Hemorrágico/metabolismo , Suínos , Tirosina/análogos & derivados , Tirosina/metabolismo
4.
Shock ; 46(4): 398-404, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26926005

RESUMO

Septic shock-related kidney failure is characterized by almost normal morphological appearance upon pathological examination. Endothelial barrier disrupture has been suggested to be of crucial importance for septic shock-induced organ dysfunction. Therefore, in murine resuscitated cecal ligation and puncture (CLP)-induced septic shock, we tested the hypothesis whether there is a direct relationship between the kidney endothelial barrier injury and renal dysfunction. Anesthetized mice underwent CLP, and 15 h later, were anesthetized again and surgically instrumented for a 5-h period of intensive care comprising lung-protective mechanical ventilation, fluid resuscitation, continuous i.v. norepinephrine to maintain target hemodynamics, and measurement of creatinine clearance (CrCl). Animals were stratified according to low or high CrCl. Nitrotyrosine formation, expression of the inducible isoform of the nitric oxide synthase, and blood cytokine (tumor necrosis factor, interleukin-6, interleukin-10) and chemokine (monocyte chemoattractant protein-1, keratinocyte-derived chemokine) levels were significantly higher in animals with low CrCl. When plotted against CrCl and neutrophil gelatinase-associated lipocalin levels, extravascular albumin accumulation, and tissue expression of the vascular endothelial growth factor and angiopoietin-1 showed significant mathematical relationships related to kidney (dys)function. Preservation of the constitutive expression of the hydrogen sulfide producing enzyme cystathione-γ-lyase was associated with maintenance of organ function. The direct quantitative relation between microvascular leakage and kidney (dys)function may provide a missing link between near-normal tissue morphology and septic shock-related renal failure, thus further highlighting the important role of vascular integrity in septic shock-related renal failure.


Assuntos
Rim/metabolismo , Choque Séptico/metabolismo , Choque Séptico/fisiopatologia , Angiopoietina-1/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Imuno-Histoquímica , Rim/fisiopatologia , Camundongos , Modelos Teóricos , Óxido Nítrico Sintase/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA