Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 58: 128521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968675

RESUMO

The synthesis and biological evaluation of eleven derivatives of the natural polyether ionophore monensin A (MON), modified at the C-26 position, is presented. Eight urethane and three ester derivatives were tested for their antimicrobial activity against different strains of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. In addition, their antiparasitic activity was also evaluated with bloodstream forms of Trypanosoma brucei. The majority of the modified ionophores were active against a variety of Gram-positive bacterial strains, including methicillin-resistant S. epidermidis, and showed better antibacterial activity than the unmodified MON. The phenyl urethane derivative of MON exhibited the most promising antibacterial activity of all tested compounds, with minimal inhibitory concentration values of 0.25-0.50 µg/ml. In contrast, none of the MON derivatives displayed higher antitrypanosomal activity than the unmodified ionophore.


Assuntos
Antibacterianos/farmacologia , Monensin/farmacologia , Tripanossomicidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Monensin/análogos & derivados , Monensin/química , Testes de Sensibilidade Parasitária , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos
2.
Biomed Pharmacother ; 153: 113440, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076555

RESUMO

Glioblastoma (GBM) remains the most frequently diagnosed primary malignant brain cancer in adults. Despite recent progress in understanding the biology of GBM, the clinical outcome for patients remains poor, with a median survival of approximately one year after diagnosis. One factor contributing to failure in clinical trials is the fact that traditional models used in GBM drug discovery poorly recapitulate patient tumors. Previous studies have shown that monensin (MON) analogs, namely esters and amides on C-26 were potent towards various types of cancer cell lines. In the present study we have investigated the activity of these molecules in GBM organoids, as well as in a host:tumor organoid model. Using a mini-ring cell viability assay we have identified seven analogs (IC50 = 91.5 ± 54.4-291.7 ± 68.8 nM) more potent than parent MON (IC50 = 612.6 ± 184.4 nM). Five of these compounds induced substantial DNA fragmentation in GBM organoids, suggestive of apoptotic cell death. The most active analog, compound 1, significantly reduced GBM cell migration, induced PARP degradation, diminished phosphorylation of STAT3, Akt and GSK3ß, increased É£H2AX signaling and upregulated expression of the autophagy associated marker LC3-II. To investigate the activity of MON and compound 1 in a tumor microenvironment, we developed human cerebral organoids (COs) from human induced pluripotent stem cells (iPSCs). The COs showed features of early developing brain such as multiple neural rosettes with a proliferative zone of neural stem cells (Nestin+), neurons (TUJ1 +), primitive ventricular system (SOX2 +/Ki67 +), intermediate zone (TBR2 +) and cortical plate (MAP2 +). In order to generate host:tumor organoids, we co-cultured RFP-labeled U87MG cells with fully formed COs. Compound 1 and MON reduced U87MG tumor size in the COs after four days of treatment and induced a significant reduction of PARP expression. These findings highlight the therapeutic potential of MON analogs towards GBM and support the application of organoid models in anti-cancer drug discovery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Pluripotentes Induzidas , Adulto , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Monensin/farmacologia , Monensin/uso terapêutico , Organoides/metabolismo , Organoides/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral
3.
Chem Biol Drug Des ; 94(4): 1859-1864, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260603

RESUMO

Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity, including anticancer activity. A series of structurally diverse monensin esters including its C-1 esters (1-9), C-26-O-acetylated derivatives (10-15), and lactone (16) was synthesized and for the first time evaluated for their antiproliferative activity against four human cancer cell lines with different drug-sensitivity level. All of the MON derivatives exhibited in vitro antiproliferative activity against cancer cells at micromolar concentrations. The majority of the compounds was able to overcome the drug resistance of LoVo/DX and MES-SA/DX5 cell lines. The most active compounds proved to be MON C-26-O-acetylated derivatives (10-15) which exhibited very good resistance index and high selectivity index.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Monensin , Neoplasias , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Monensin/análogos & derivados , Monensin/síntese química , Monensin/química , Monensin/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA