RESUMO
Polymorphisms in the apolipoprotein E (ApoE) gene confer a major genetic risk for the development of late-onset Alzheimer's disease (AD) and are predictive of outcome following traumatic brain injury (TBI). Alterations in adult hippocampal neurogenesis have long been associated with both the development of AD and recovery following TBI and ApoE is known to play a role in this process. In order to determine how ApoE might influence hippocampal injury-induced neurogenesis, we generated a conditional knockout system whereby functional ApoE from astrocytes was ablated prior to injury. While successfully ablating ApoE just prior to TBI in mice, we observed an attenuation in the development of the spines in the newborn neurons. Intriguingly, animals with a double-hit, i.e. injury and ApoE conditionally inactivated in astrocytes, demonstrated the most pronounced impairments in the hippocampal-dependent Morris water maze test, failing to exhibit spatial memory after both acquisition and reversal training trials. In comparison, conditional knockout mice without injury displayed impairments but only in the reversal phase of the test, suggesting accumulative effects of astrocytic ApoE deficiency and traumatic brain injury on AD-like phenotypes. Together, these findings demonstrate that astrocytic ApoE is required for functional injury-induced neurogenesis following traumatic brain injury.
Assuntos
Apolipoproteínas E/genética , Lesões Encefálicas Traumáticas/fisiopatologia , Cognição , Neurogênese , Neurônios/patologia , Animais , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Camundongos , Camundongos KnockoutRESUMO
Adult hippocampal neurogenesis occurs throughout life and is believed to participate in cognitive functions such as learning and memory. A number of genes that regulate adult hippocampal neurogenesis have been identified, although most of these have been implicated in progenitor proliferation and survival, but not in the development into fully differentiated neurons. Among these genes, apolipoprotein E (ApoE) is particularly compelling because the human ApoE isoform E4 is a risk factor for the development of Alzheimer's disease, where hippocampal neurogenesis is reported to be dysfunctional. To investigate the effects of ApoE and its human isoforms on adult hippocampal neurogenesis and neuronal development, retroviruses carrying a GFP-expressing vector were injected into wild-type (WT), ApoE-deficient, and human targeted replacement (ApoE3 and ApoE4) mice to infect progenitors in the dentate gyrus and analyze the morphology of fully developed GFP-expressing neurons. Analysis of these adult-born neurons revealed significant decreases in the complexity of dendritic arborizations and spine density in ApoE-deficient mice compared with WT mice, as well as in ApoE4 mice compared with ApoE3. These findings demonstrate that ApoE deficiency and the ApoE4 human isoform both impair hippocampal neurogenesis and give insight into how ApoE may influence hippocampal-related neurological diseases.