Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 131(1): 1-15, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820017

RESUMO

Humans substantially outperform robotic systems in tasks that require physical interaction, despite seemingly inferior muscle bandwidth and slow neural information transmission. The control strategies that enable this performance remain poorly understood. To bridge that gap, this study examined kinematically constrained motion as an intermediate step between the widely studied unconstrained motions and sparsely studied physical interactions. Subjects turned a horizontal planar crank in two directions (clockwise and counterclockwise) at three constant target speeds (fast, medium, and very slow) as instructed via visual display. With the hand constrained to move in a circle, nonzero forces against the constraint were measured. This experiment exposed two observations that could not result from mechanics alone but may be attributed to neural control composed of dynamic primitives. A plausible mathematical model of interactive dynamics (mechanical impedance) was assumed and used to "subtract" peripheral neuromechanics. This method revealed a summary of the underlying neural control in terms of motion, a zero-force trajectory. The estimated zero-force trajectories were approximately elliptical and their orientation differed significantly with turning direction; that is consistent with control using oscillations to generate an elliptical zero-force trajectory. However, for periods longer than 2-5 s, motion can no longer be perceived or executed as periodic. Instead, it decomposes into a sequence of submovements, manifesting as increased variability. These quantifiable performance limitations support the hypothesis that humans simplify this constrained-motion task by exploiting at least three primitive dynamic actions: oscillations, submovements, and mechanical impedance.NEW & NOTEWORTHY Control using primitive dynamic actions may explain why human performance is superior to robots despite seemingly inferior "wetware"; however, this also implies limitations. For a crank-turning task, this work quantified two such informative limitations. Force was exerted even though it produced no mechanical work, the underlying zero-force trajectory was roughly elliptical, and its orientation differed with turning direction, evidence of oscillatory control. At slow speeds, speed variability increased substantially, indicating intermittent control via submovements.


Assuntos
Mãos , Movimento , Humanos , Mãos/fisiologia , Movimento (Física) , Movimento/fisiologia , Fenômenos Biomecânicos
2.
J Neurophysiol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258774

RESUMO

Despite the abundance of studies on the control of standing balance, insights about the roles of biomechanics and neural control have been limited. Previous work introduced an analysis combining the direction and orientation of foot-ground forces. The "intersection point" of the lines of actions of these forces exhibited a consistent pattern across healthy, young subjects when computed for different frequency components of the center of pressure signal. To investigate the control strategy of quiet stance, we applied this intersection point analysis to experimental data of 15 healthy, young subjects balancing in tandem stance on a narrow beam and on the ground. Data from the sagittal and frontal planes were analyzed separately. The task was modeled as a double-inverted pendulum controlled by an optimal controller with torque-actuated ankle and hip joints and additive white noise. To test our prediction that the controller that minimized overall joint effort would yield the best fit across the tested conditions and planes of analyses, experimental results were compared to simulation outcomes. The controller that minimized overall effort produced the best fit in both balance conditions and planes of analyses. For some conditions, the relative penalty on the hip and ankle joints varied in a way relevant to the balance condition or to the plane of analysis. These results suggest that unimpaired quiet balance in a challenging environment can be best described by a controller that maintains minimal effort through the adjustment of relative ankle and hip joint torques.

3.
Neural Comput ; 35(5): 853-895, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36944234

RESUMO

Humans are adept at a wide variety of motor skills, including the handling of complex objects and using tools. Advances to understand the control of voluntary goal-directed movements have focused on simple behaviors such as reaching, uncoupled to any additional object dynamics. Under these simplified conditions, basic elements of motor control, such as the roles of body mechanics, objective functions, and sensory feedback, have been characterized. However, these elements have mostly been examined in isolation, and the interactions between these elements have received less attention. This study examined a task with internal dynamics, inspired by the daily skill of transporting a cup of coffee, with additional expected or unexpected perturbations to probe the structure of the controller. Using optimal feedback control (OFC) as the basis, it proved necessary to endow the model of the body with mechanical impedance to generate the kinematic features observed in the human experimental data. The addition of mechanical impedance revealed that simulated movements were no longer sensitively dependent on the objective function, a highly debated cornerstone of optimal control. Further, feedforward replay of the control inputs was similarly successful in coping with perturbations as when feedback, or sensory information, was included. These findings suggest that when the control model incorporates a representation of the mechanical properties of the limb, that is, embodies its dynamics, the specific objective function and sensory feedback become less critical, and complex interactions with dynamic objects can be successfully managed.


Assuntos
Retroalimentação Sensorial , Movimento , Humanos , Retroalimentação , Destreza Motora , Fenômenos Biomecânicos
4.
Arch Phys Med Rehabil ; 104(4): 631-644, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669637

RESUMO

OBJECTIVE: To conduct a comprehensive systematic review and meta-analysis of the effects of active video game (AVG) interventions on postural balance across all ages in populations with and without neurologic impairments, using all types of platforms. DATA SOURCE: Six databases (PubMed, PsycINFO, Sport Discus, MEDLINE, Web of Science, and Google Scholar) were reviewed by December 31, 2020. STUDY SELECTION: The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42020204191). For inclusion, a study must be original, published in English peer-reviewed venues and employed AVGs as the sole or primary intervention to enhance, maintain, or regain postural balance. At least 2 within- or between-subjects conditions must be included with ≥10 participants per condition. DATA EXTRACTION: Three reviewers independently performed data extraction and assessed the risk of bias. DATA SYNTHESIS: 129 studies were identified, with 102 eligible for meta-analysis. The total number of tested participants was 6407 (60.0% women, Mage=55.1 years, range=3-99 years, SD=22.6). The average intervention duration was 35.6 min/session with 3.1 sessions/week for 7.6 weeks. The overall effect favored AVG interventions (Hedges' g=0.469; 95% confidence interval [CI]=0.407-0.531). Although the overall study quality was relatively low, the analysis expectedly indicated significantly larger effects (P<.001) for AVG-interventions over passive controls (Hedges' g=0.627; 95% CI=0.466-0.788), but importantly also favored AVG-interventions over conventional treatment (Hedges' g=0.389; 95% CI=0.311-0.468). All clinical populations responded positively, although with different effect sizes (P=.023). Children experienced larger treatment effects (Hedges' g=0.550; 95% CI=0.336-0.764), closely followed by seniors (Hedges' g=0.529; 95% CI=0.402-0.656). The largest intervention effect on balance improvements was seen in healthy people without a medical condition (Hedges' g=0.609; 95% CI=0.465-0.753). CONCLUSIONS: AVGs can produce postural balance improvements and better postural maintenance. All populations could benefit from AVG interventions.


Assuntos
Esportes , Jogos de Vídeo , Criança , Humanos , Feminino , Masculino , Equilíbrio Postural , Nível de Saúde
5.
J Neurosci ; 41(5): 866-872, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33380468

RESUMO

The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.


Assuntos
Cognição/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção do Tempo/fisiologia , Animais , Humanos
6.
PLoS Comput Biol ; 17(12): e1009597, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34919539

RESUMO

Humans dexterously interact with a variety of objects, including those with complex internal dynamics. Even in the simple action of carrying a cup of coffee, the hand not only applies a force to the cup, but also indirectly to the liquid, which elicits complex reaction forces back on the hand. Due to underactuation and nonlinearity, the object's dynamic response to an action sensitively depends on its initial state and can display unpredictable, even chaotic behavior. With the overarching hypothesis that subjects strive for predictable object-hand interactions, this study examined how subjects explored and prepared the dynamics of an object for subsequent execution of the target task. We specifically hypothesized that subjects find initial conditions that shorten the transients prior to reaching a stable and predictable steady state. Reaching a predictable steady state is desirable as it may reduce the need for online error corrections and facilitate feed forward control. Alternative hypotheses were that subjects seek to reduce effort, increase smoothness, and reduce risk of failure. Motivated by the task of 'carrying a cup of coffee', a simplified cup-and-ball model was implemented in a virtual environment. Human subjects interacted with this virtual object via a robotic manipulandum that provided force feedback. Subjects were encouraged to first explore and prepare the cup-and-ball before initiating a rhythmic movement at a specified frequency between two targets without losing the ball. Consistent with the hypotheses, subjects increased the predictability of interaction forces between hand and object and converged to a set of initial conditions followed by significantly decreased transients. The three alternative hypotheses were not supported. Surprisingly, the subjects' strategy was more effortful and less smooth, unlike the observed behavior in simple reaching movements. Inverse dynamics of the cup-and-ball system and forward simulations with an impedance controller successfully described subjects' behavior. The initial conditions chosen by the subjects in the experiment matched those that produced the most predictable interactions in simulation. These results present first support for the hypothesis that humans prepare the object to minimize transients and increase stability and, overall, the predictability of hand-object interactions.


Assuntos
Fenômenos Biomecânicos/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Adulto , Simulação por Computador , Feminino , Mãos/fisiologia , Humanos , Masculino , Realidade Virtual , Adulto Jovem
7.
J Neuroeng Rehabil ; 19(1): 97, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088387

RESUMO

BACKGROUND: Numerous studies showed that postural balance improves through light touch on a stable surface highlighting the importance of haptic information, seemingly downplaying the mechanical contributions of the support. The present study examined the mechanical effects of canes for assisting balance in healthy individuals challenged by standing on a beam. METHODS: Sixteen participants supported themselves with two canes, one in each hand, and applied minimal, preferred, or maximum force onto the canes. They positioned the canes in the frontal plane or in a tripod configuration. Statistical analysis used a linear mixed model to evaluate the effects on the center of pressure and the center of mass. RESULTS: The canes significantly reduced the variability of the center of pressure and the center of mass to the same level as when standing on the ground. Increasing the exerted force beyond the preferred level yielded no further benefits, although in the preferred force condition, participants exploited the altered mechanics by resting their arms on the canes. The tripod configuration allowed for larger variability of the center of pressure in the task-irrelevant anterior-posterior dimension. High forces had a destabilizing effect on the canes: the displacement of the hand on the cane handle increased with the force. CONCLUSIONS: Given this static instability, these results show that using canes can provide not only mechanical benefits but also challenges. From a control perspective, effort can be reduced by resting the arms on the canes and by channeling noise in the task-irrelevant dimensions. However, larger forces exerted onto the canes can also have destabilizing effects and the instability of the canes needs to be counteracted, possibly by arm and shoulder stiffness. Insights into the variety of mechanical effects is important for the design of canes and the instructions of how to use them.


Assuntos
Postura , Posição Ortostática , Braço , Mãos , Humanos , Equilíbrio Postural
8.
J Neurophysiol ; 125(1): 43-62, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146063

RESUMO

Virtual environments have been widely used in motor neuroscience and rehabilitation, as they afford tight control of sensorimotor conditions and readily afford visual and haptic manipulations. However, typically, studies have only examined performance in the virtual testbeds, without asking how the simplified and controlled movement in the virtual environment compares to behavior in the real world. To test whether performance in the virtual environment was a valid representation of corresponding behavior in the real world, this study compared throwing in a virtual set-up with realistic throwing, where the task parameters were precisely matched. Even though the virtual task only required a horizontal single-joint arm movement, similar to many simplified movement assays in motor neuroscience, throwing accuracy and precision were significantly worse than in the real task that involved all degrees of freedom of the arm; only after 3 practice days did success rate and error reach similar levels. To gain more insight into the structure of the learning process, movement variability was decomposed into deterministic and stochastic contributions. Using the tolerance-noise-covariation decomposition method, distinct stages of learning were revealed: While tolerance was optimized first in both environments, it was higher in the virtual environment, suggesting that more familiarization and exploration was needed in the virtual task. Covariation and noise showed more contributions in the real task, indicating that subjects reached the stage of fine-tuning of variability only in the real task. These results showed that while the tasks were precisely matched, the simplified movements in the virtual environment required more time to become successful. These findings resonate with the reported problems in transfer of therapeutic benefits from virtual to real environments and alert that the use of virtual environments in research and rehabilitation needs more caution.NEW & NOTEWORTHY This study compared human performance of the same throwing task in a real and a matched virtual environment. With 3 days' practice, subjects improved significantly faster in the real task, even though the arm and hand movements were more complex. Decomposing variability revealed that performance in the virtual environment, despite its simplified hand movements, required more exploration. Additionally, due to fewer constraints in the real task, subjects could modify the geometry of the solution manifold, by shifting the release position, and thereby simplify the task.


Assuntos
Braço/fisiologia , Aprendizagem , Desempenho Psicomotor , Realidade Virtual , Feminino , Humanos , Masculino , Movimento , Percepção Visual , Adulto Jovem
9.
J Neurophysiol ; 126(1): 195-212, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34107225

RESUMO

Many daily tasks involve the collaboration of both hands. Humans dexterously adjust hand poses and modulate the forces exerted by fingers in response to task demands. Hand pose selection has been intensively studied in unimanual tasks, but little work has investigated bimanual tasks. This work examines hand poses selection in a bimanual high-precision-screwing task taken from watchmaking. Twenty right-handed subjects dismounted a screw on the watch face with a screwdriver in two conditions. Results showed that although subjects used similar hand poses across steps within the same experimental conditions, the hand poses differed significantly in the two conditions. In the free-base condition, subjects needed to stabilize the watch face on the table. The role distribution across hands was strongly influenced by hand dominance: the dominant hand manipulated the tool, whereas the nondominant hand controlled the additional degrees of freedom that might impair performance. In contrast, in the fixed-base condition, the watch face was stationary. Subjects used both hands even though single hand would have been sufficient. Importantly, hand poses decoupled the control of task-demanded force and torque across hands through virtual fingers that grouped multiple fingers into functional units. This preference for bimanual over unimanual control strategy could be an effort to reduce variability caused by mechanical couplings and to alleviate intrinsic sensorimotor processing burdens. To afford analysis of this variety of observations, a novel graphical matrix-based representation of the distribution of hand pose combinations was developed. Atypical hand poses that are not documented in extant hand taxonomies are also included.NEW & NOTEWORTHY We study hand poses selection in bimanual fine motor skills. To understand how roles and control variables are distributed across the hands and fingers, we compared two conditions when unscrewing a screw from a watch face. When the watch face needed positioning, role distribution was strongly influenced by hand dominance; when the watch face was stationary, a variety of hand pose combinations emerged. Control of independent task demands is distributed either across hands or across distinct groups of fingers.


Assuntos
Lateralidade Funcional/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Adolescente , Adulto , Feminino , Mãos , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
10.
Exp Physiol ; 106(5): 1285-1302, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675125

RESUMO

NEW FINDINGS: What is the central question of this study? The respiratory centres in the brainstem that control respiration receive inputs from various sources, including proprioceptors in muscles and joints and suprapontine centres, which all affect limb movements. What is the effect of spontaneous movement on respiration in preterm infants? What is the main finding and its importance? Apnoeic events tend to be preceded by movements. These activity bursts can cause respiratory instability that leads to an apnoeic event. These findings show promise that infant movements might serve as potential predictors of life-threatening apnoeic episodes, but more research is required. ABSTRACT: A common condition in preterm infants (<37 weeks' gestational age) is apnoea resulting from immaturity and instability of the respiratory system. As apnoeas are implicated in several acute and long-term complications, prediction of apnoeas may preempt their onset and subsequent complications. This study tests the hypothesis that infant movements are a predictive marker for apnoeic episodes and examines the relation between movement and respiration. Movement was detected using a wavelet algorithm applied to the photoplethysmographic signal. Respiratory activity was measured in nine infants using respiratory inductance plethysmography; in an additional eight infants, respiration and partial pressure of airway carbon dioxide ( PCO2 ) were measured by a nasal cannula with side-stream capnometry. In the first cohort, the distribution of movements before and after the onset of 370 apnoeic events was compared. Results showed that apnoeic events were associated with longer movement duration occurring before apnoea onsets compared to after. In the second cohort, respiration was analysed in relation to movement, comparing standard deviation of inter-breath intervals (IBI) before and after apnoeas. Poincaré maps of the respiratory activity quantified variability of airway PCO2 in phase space. Movement significantly increased the variability of IBI and PCO2 . Moreover, destabilization of respiration was dependent on the duration of movement. These findings support that bodily movements of the infants precede respiratory instability. Further research is warranted to explore the predictive value of movement for life-threatening events, useful for clinical management and risk stratification.


Assuntos
Recém-Nascido Prematuro , Respiração , Apneia , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Pletismografia/métodos
11.
Exp Brain Res ; 239(12): 3487-3505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524491

RESUMO

Sustained limb motor activity has been used as a therapeutic tool for improving rehabilitation outcomes and is thought to be mediated by neuroplastic changes associated with activity-induced cortical excitability. Although prior research has reported enhancing effects of continuous chewing and swallowing activity on learning, the potential beneficial effects of sustained oromotor activity on speech improvements is not well-documented. This exploratory study was designed to examine the effects of continuous oromotor activity on subsequent speech learning. Twenty neurologically healthy young adults engaged in periods of continuous chewing and speech after which they completed a novel speech motor learning task. The motor learning task was designed to elicit improvements in accuracy and efficiency of speech performance across repetitions of eight-syllable nonwords. In addition, transcranial magnetic stimulation was used to measure the cortical silent period (cSP) of the lip motor cortex before and after the periods of continuous oromotor behaviors. All repetitions of the nonword task were recorded acoustically and kinematically using a three-dimensional motion capture system. Productions were analyzed for accuracy and duration, as well as lip movement distance and speed. A control condition estimated baseline improvement rates in speech performance. Results revealed improved speech performance following 10 min of chewing. In contrast, speech performance following 10 min of continuous speech was degraded. There was no change in the cSP as a result of either oromotor activity. The clinical implications of these findings are discussed in the context of speech rehabilitation and neuromodulation.


Assuntos
Córtex Motor , Fala , Fenômenos Biomecânicos , Potencial Evocado Motor , Humanos , Aprendizagem , Medida da Produção da Fala , Estimulação Magnética Transcraniana , Adulto Jovem
12.
J Neuroeng Rehabil ; 18(1): 145, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563223

RESUMO

BACKGROUND: Maintaining upright posture is an unstable task that requires sophisticated neuro-muscular control. Humans use foot-ground interaction forces, characterized by point of application, magnitude, and direction to manage body accelerations. When analyzing the directions of the ground reaction forces of standing humans in the frequency domain, previous work found a consistent pattern in different frequency bands. To test whether this frequency-dependent behavior provided a distinctive signature of neural control or was a necessary consequence of biomechanics, this study simulated quiet standing and compared the results with human subject data. METHODS: Aiming to develop the simplest competent and neuromechanically justifiable dynamic model that could account for the pattern observed across multiple subjects, we first explored the minimum number of degrees of freedom required for the model. Then, we applied a well-established optimal control method that was parameterized to maximize physiologically-relevant insight to stabilize the balancing model. RESULTS: If a standing human was modeled as a single inverted pendulum, no controller could reproduce the experimentally observed pattern. The simplest competent model that approximated a standing human was a double inverted pendulum with torque-actuated ankle and hip joints. A range of controller parameters could stabilize this model and reproduce the general trend observed in experimental data; this result seems to indicate a biomechanical constraint and not a consequence of control. However, details of the frequency-dependent pattern varied substantially across tested control parameter values. The set of parameters that best reproduced the human experimental results suggests that the control strategy employed by human subjects to maintain quiet standing was best described by minimal control effort with an emphasis on ankle torque. CONCLUSIONS: The findings suggest that the frequency-dependent pattern of ground reaction forces observed in quiet standing conveys quantitative information about human control strategies. This study's method might be extended to investigate human neural control strategies in different contexts of balance, such as with an assistive device or in neurologically impaired subjects.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Equilíbrio Postural , Posição Ortostática
13.
J Neurophysiol ; 123(5): 1870-1885, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159419

RESUMO

While the study of unconstrained movements has revealed important features of neural control, generalizing those insights to more sophisticated object manipulation is challenging. Humans excel at physical interaction with objects, even when those objects introduce complex dynamics and kinematic constraints. This study examined humans turning a horizontal planar crank (radius 10.29 cm) at their preferred and three instructed speeds (with visual feedback), both in clockwise and counterclockwise directions. To explore the role of neuromechanical dynamics, the instructed speeds covered a wide range: fast (near the limits of performance), medium (near preferred speed), and very slow (rendering dynamic effects negligible). Because kinematically constrained movements involve significant physical interaction, disentangling neural control from the influences of biomechanics presents a challenge. To address it, we modeled the interactive dynamics to "subtract off" peripheral biomechanics from observed force and kinematic data, thereby estimating aspects of underlying neural action that may be expressed in terms of motion. We demonstrate the value of this method: remarkably, an approximately elliptical path emerged, and speed minima coincided with curvature maxima, similar to what is seen in unconstrained movements, even though the hand moved at nearly constant speed along a constant-curvature path. These findings suggest that the neural controller takes advantage of peripheral biomechanics to simplify physical interaction. As a result, patterns seen in unconstrained movements persist even when physical interaction prevents their expression in hand kinematics. The reemergence of a speed-curvature relation indicates that it is due, at least in part, to neural processes that emphasize smoothness and predictability.NEW & NOTEWORTHY Physically interacting with kinematic constraints is commonplace in everyday actions. We report a study of humans turning a crank, a circular constraint that imposes constant hand path curvature and hence should suppress variations of hand speed due to the power-law speed-curvature relation widely reported for unconstrained motions. Remarkably, we found that, when peripheral biomechanical factors are removed, a speed-curvature relation reemerges, indicating that it is, at least in part, of neural origin.


Assuntos
Fenômenos Biomecânicos/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Humanos , Masculino , Adulto Jovem
14.
Adv Robot ; 34(17): 1137-1155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100448

RESUMO

Manipulation of objects with underactuated dynamics remains a challenge for robots. In contrast, humans excel at 'tool use' and more insight into human control strategies may inform robotic control architectures. We examined human control of objects that exhibit complex - underactuated, nonlinear, and potentially chaotic dynamics, such as transporting a cup of coffee. Simple control strategies appropriate for unconstrained movements, such as maximizing smoothness, fail as interaction forces have to be compensated or preempted. However, predictive control based on internal models appears daunting when the objects have nonlinear and unpredictable dynamics. We hypothesized that humans learn strategies that make these interactions predictable. Using a virtual environment subjects interacted with a virtual cup and rolling ball using a robotic visual and haptic interface. Two different metrics quantified predictability: stability or contraction, and mutual information between controller and object. In point-to-point displacements subjects exploited the contracting regions of the object dynamics to safely navigate perturbations. Control contraction metrics showed that subjects used a controller that exponentially stabilized trajectories. During continuous cup-and-ball displacements subjects developed predictable solutions sacrificing smoothness and energy efficiency. These results may stimulate control strategies for dexterous robotic manipulators and human-robot interaction.

15.
J Neurophysiol ; 121(2): 574-587, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565969

RESUMO

This study examined how humans spontaneously merge a sequence of discrete actions into a rhythmic pattern, even when periodicity is not required. Two experiments used a virtual throwing task, in which subjects performed a long sequence of discrete throwing movements, aiming to hit a virtual target. In experiment 1, subjects performed the task for 11 sessions. Although there was no instruction to perform rhythmically, the variability of the interthrow intervals decreased to a level comparable to that of synchronizing with a metronome; furthermore, dwell times shortened or even disappeared with practice. Floquet multipliers and decreasing variability of the arm trajectories estimated in state space indicated an increasing degree of dynamic stability. Subjects who achieved a higher level of periodicity and stability also displayed higher accuracy in the throwing task. To directly test whether rhythmicity affected performance, experiment 2 disrupted the evolving continuity and periodicity by enforcing a pause between successive throws. This discrete group performed significantly worse and with higher variability in their arm trajectories than the self-paced group. These findings are discussed in the context of previous neuroimaging results showing that rhythmic movements involve significantly fewer cortical and subcortical activations than discrete movements and therefore may pose a computationally more parsimonious solution. Such emerging stable rhythms in neuromotor subsystems may serve as building blocks or dynamic primitives for complex actions. The tendency for humans to spontaneously fall into a rhythm in voluntary movements is consistent with the ubiquity of rhythms at all levels of the physiological system. NEW & NOTEWORTHY When performing a series of throws to hit a target, humans spontaneously merged successive actions into a continuous approximately periodic pattern. The degree of rhythmicity and stability correlated with hitting accuracy. Enforcing irregular pauses between throws to disrupt the rhythm deteriorated performance. Stable rhythmic patterns may simplify control of movement and serve as dynamic primitives for more complex actions. This observation reveals that biological systems tend to exhibit rhythmic behavior consistent with a plethora of physiological processes.


Assuntos
Braço/fisiologia , Movimento , Periodicidade , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Desempenho Psicomotor , Adulto Jovem
16.
PLoS Comput Biol ; 14(2): e1006013, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462147

RESUMO

Throwing is a uniquely human skill that requires a high degree of coordination to successfully hit a target. Timing of ball release appears crucial as previous studies report required timing accuracies as short as 1-2ms, which however appear physiologically challenging. This study mathematically and experimentally demonstrates that humans can overcome these seemingly stringent timing requirements by shaping their hand trajectories to create extended timing windows, where ball releases achieve target hits despite temporal imprecision. Subjects practiced four task variations in a virtual environment, each with a distinct geometry of the solution space and different demands for timing. Model-based analyses of arm trajectories revealed that subjects first decreased timing error, followed by lengthening timing windows in their hand trajectories. This pattern was invariant across solution spaces, except for a control case. Hence, the exquisite skill that humans evolved for throwing is achieved by developing strategies that are less sensitive to temporal variability arising from neuromotor noise. This analysis also provides an explanation why coaches emphasize the "follow-through" in many ball sports.


Assuntos
Modelos Neurológicos , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Braço/fisiologia , Fenômenos Biomecânicos , Feminino , Mãos/fisiologia , Humanos , Masculino , Movimento/fisiologia , Análise de Regressão , Reprodutibilidade dos Testes , Adulto Jovem
17.
J Neuroeng Rehabil ; 16(1): 121, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31627755

RESUMO

The development of more effective rehabilitative interventions requires a better understanding of how humans learn and transfer motor skills in real-world contexts. Presently, clinicians design interventions to promote skill learning by relying on evidence from experimental paradigms involving simple tasks, such as reaching for a target. While these tasks facilitate stringent hypothesis testing in laboratory settings, the results may not shed light on performance of more complex real-world skills. In this perspective, we argue that virtual environments (VEs) are flexible, novel platforms to evaluate learning and transfer of complex skills without sacrificing experimental control. Specifically, VEs use models of real-life tasks that afford controlled experimental manipulations to measure and guide behavior with a precision that exceeds the capabilities of physical environments. This paper reviews recent insights from VE paradigms on motor learning into two pressing challenges in rehabilitation research: 1) Which training strategies in VEs promote complex skill learning? and 2) How can transfer of learning from virtual to real environments be enhanced? Defining complex skills by having nested redundancies, we outline findings on the role of movement variability in complex skill acquisition and discuss how VEs can provide novel forms of guidance to enhance learning. We review the evidence for skill transfer from virtual to real environments in typically developing and neurologically-impaired populations with a view to understanding how differences in sensory-motor information may influence learning strategies. We provide actionable suggestions for practicing clinicians and outline broad areas where more research is required. Finally, we conclude that VEs present distinctive experimental platforms to understand complex skill learning that should enable transfer from therapeutic practice to the real world.


Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Reabilitação/métodos , Realidade Virtual , Humanos
18.
J Neurophysiol ; 120(2): 765-780, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668379

RESUMO

Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary advantage. This study examined the strategies humans choose when manipulating an object with underactuated internal dynamics, such as a cup of coffee. The dynamics of the object renders the temporal evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the oscillation frequency, whereas the amplitude was prescribed. Three hypotheses were tested: 1) humans decrease interaction forces between hand and object; 2) humans increase the predictability of the object dynamics; and 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that humans chose either a high-frequency strategy with antiphase cup-and-ball movements or a low-frequency strategy with in-phase cup-and-ball movements. Counter to hypothesis 1, they did not decrease interaction force; instead, they increased the predictability of the interaction dynamics, quantified by mutual information, supporting hypothesis 2. To address hypothesis 3, frequency analysis of the coupled hand-object system revealed two resonance frequencies separated by an antiresonance frequency. The low-frequency strategy exploited one resonance, whereas the high-frequency strategy afforded more choice, consistent with the frequency response of the coupled system; both strategies avoided the antiresonance. Hence, humans did not prioritize small interaction forces but rather strategies that rendered interactions predictable. These findings highlight that physical interactions with complex objects pose control challenges not present in unconstrained movements. NEW & NOTEWORTHY Daily actions involve manipulation of complex nonrigid objects, which present a challenge since humans have no direct control of the whole object. We used a virtual-reality experiment and simulations of a cart-and-pendulum system coupled to hand movements with impedance to analyze the manipulation of this underactuated object. We showed that participants developed strategies that increased the predictability of the object behavior by exploiting the resonance structure of the object but did not minimize the hand-object interaction force.


Assuntos
Modelos Biológicos , Movimento , Análise e Desempenho de Tarefas , Adulto , Fenômenos Biomecânicos , Mãos , Humanos , Fenômenos Mecânicos , Realidade Virtual , Adulto Jovem
19.
Chaos ; 28(10): 103103, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30384626

RESUMO

Previous research on movement control suggested that humans exploit stability to reduce vulnerability to internal noise and external perturbations. For interactions with complex objects, predictive control based on an internal model of body and environment is needed to preempt perturbations and instabilities due to delays. We hypothesize that stability can serve as means to render the complex dynamics of the body and the task more predictable and thereby simplify control. However, the assessment of stability in complex interactions with nonlinear and underactuated objects is challenging, as for existent stability analyses the system needs to be close to a (known) attractor. After reviewing existing methods for stability analysis of human movement, we argue that contraction theory provides a suitable approach to quantify stability or convergence in complex transient behaviors. To test its usefulness, we examined the task of carrying a cup of coffee, an object with internal degrees of freedom. A simplified model of the task, a cart with a suspended pendulum, was implemented in a virtual environment to study human control strategies. The experimental task was to transport this cart-and-pendulum on a horizontal line from rest to a target position as fast as possible. Each block of trials presented a visible perturbation, which either could be in the direction of motion or opposite to it. To test the hypothesis that humans exploit stability to overcome perturbations, the dynamic model of the free, unforced system was analyzed using contraction theory. A contraction metric was obtained by numerically solving a partial differential equation, and the contraction regions with respect to that metric were computed. Experimental results showed that subjects indeed moved through the contraction regions of the free, unforced system. This strategy attenuated the perturbations, obviated error corrections, and made the dynamics more predictable. The advantages and shortcomings of contraction analysis are discussed in the context of other stability analyses.


Assuntos
Movimento , Algoritmos , Fenômenos Biomecânicos , Meio Ambiente , Humanos , Remoção , Modelos Teóricos , Dinâmica não Linear , Reprodutibilidade dos Testes , Caminhada
20.
J Neurophysiol ; 118(4): 2089-2102, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701533

RESUMO

Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation.NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control.


Assuntos
Teste de Esforço/métodos , Terapia por Exercício/métodos , Robótica/métodos , Caminhada/fisiologia , Adaptação Fisiológica , Adulto , Tornozelo/fisiologia , Braquetes , Teste de Esforço/instrumentação , Terapia por Exercício/instrumentação , Feminino , Humanos , Masculino , Reabilitação Neurológica/instrumentação , Reabilitação Neurológica/métodos , Robótica/instrumentação , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA