Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Appl Clin Med Phys ; 19(4): 214-221, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29901278

RESUMO

This study details a validation process for linear accelerator-based treatment of trigeminal neuralgia using HD-MLC field collimation. Nine trigeminal neuralgia treatment plans utilizing HD-MLC were selected for absolute dose measurement at isocenter using a commercial scintillating detector in an anthropomorphic phantom. Four plans were chosen for film dosimetry measurements in each of the three principal planes to assess spatial dose distribution agreement with the treatment planning system. Additionally, trajectory log analysis for each treatment field in the nine cases was performed to assess mechanical positioning accuracy of the MLC system during delivery. Scintillator and film measurements both revealed mean dose agreement at isocenter of better than 3% while FWHM of the 2D dose distribution in each plane showed agreement between plan and measurement within 0.2 mm. Analysis of log files revealed a maximum MLC leaf positioning error of 0.04 mm across 178 treatment fields. In conjunction with a quality-controlled treatment delivery methodology, an appropriately commissioned treatment planning system can be used for accurate and clinically appropriate design of trigeminal neuralgia treatment plans utilizing HD-MLC.


Assuntos
Neuralgia do Trigêmeo/cirurgia , Dosimetria Fotográfica , Humanos , Aceleradores de Partículas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
J Appl Clin Med Phys ; 18(4): 40-50, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470816

RESUMO

PURPOSE: To investigate the improvement of combined monoscopic/stereoscopic prostate motion monitoring with room-mounted dual x-ray systems by adopting patient specific methods. METHODS: The linac couch was used as a motion stage to simulate 40 highly dynamic real patient prostate trajectories. For each trajectory, 40 s pretreatment and 120 s treatment periods were extracted to represent a typical treatment fraction. Motion was monitored via continuous stereoscopic x-ray imaging of a single gold fiducial and images were retrospectively divided into periods of stereoscopic and monoscopic imaging to simulate periodic blocking of the room-mounted system by the gantry during arc-based therapy. The accuracy of the combined motion monitoring was assessed by comparison with the linac couch log files. To estimate 3-D marker position during monoscopic imaging, the use of population statistics was compared to both maximum likelihood estimation and stereoscopic localization based estimation of individualized prostate probability density functions (PDFs) from the pretreatment period. The inclusion of intrafraction updating was compared to pretreatment initialization alone. RESULTS: Combined mono/stereoscopic localization was successfully implemented. During the transitions from stereoscopic to monoscopic imaging, fiducial localization exhibits sharp discontinuities when population PDFs were employed. Patient specific PDFs successfully reduced the localization error when estimated from stereoscopic localizations, whereas maximum likelihood estimation (MLE) was too unstable in the room-mounted geometry. Intrafraction stereoscopic updating provided further increases in accuracy. Residual error tended to decrease throughout the treatment fraction, as the patient-specific PDFs became more refined. CONCLUSIONS: This is the first demonstration of toggled monoscopic/stereoscopic localization using room-mounted dual x-ray imagers, enabling continuous intrafraction motion monitoring for these systems. We showed that both pretreatment individualization and intrafraction updating should be used to provide the most accurate motion monitoring.


Assuntos
Movimentos dos Órgãos , Próstata/diagnóstico por imagem , Radiografia/instrumentação , Desenho de Equipamento , Humanos , Funções Verossimilhança , Masculino
3.
J Neurol Neurosurg Psychiatry ; 87(3): 267-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25814491

RESUMO

PURPOSE: Functional MRI (fMRI) is becoming increasingly integrated into clinical practice for presurgical mapping. Current efforts are focused on validating data quality, with reliability being a major factor. In this paper, we demonstrate the utility of a recently developed approach that uses receiver operating characteristic-reliability (ROC-r) to: (1) identify reliable versus unreliable data sets; (2) automatically select processing options to enhance data quality; and (3) automatically select individualised thresholds for activation maps. METHODS: Presurgical fMRI was conducted in 16 patients undergoing surgical treatment for brain tumours. Within-session test-retest fMRI was conducted, and ROC-reliability of the patient group was compared to a previous healthy control cohort. Individually optimised preprocessing pipelines were determined to improve reliability. Spatial correspondence was assessed by comparing the fMRI results to intraoperative cortical stimulation mapping, in terms of the distance to the nearest active fMRI voxel. RESULTS: The average ROC-r reliability for the patients was 0.58±0.03, as compared to 0.72±0.02 in healthy controls. For the patient group, this increased significantly to 0.65±0.02 by adopting optimised preprocessing pipelines. Co-localisation of the fMRI maps with cortical stimulation was significantly better for more reliable versus less reliable data sets (8.3±0.9 vs 29±3 mm, respectively). CONCLUSIONS: We demonstrated ROC-r analysis for identifying reliable fMRI data sets, choosing optimal postprocessing pipelines, and selecting patient-specific thresholds. Data sets with higher reliability also showed closer spatial correspondence to cortical stimulation. ROC-r can thus identify poor fMRI data at time of scanning, allowing for repeat scans when necessary. ROC-r analysis provides optimised and automated fMRI processing for improved presurgical mapping.


Assuntos
Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Neoplasias Encefálicas/cirurgia , Confiabilidade dos Dados , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Adulto , Estudos de Casos e Controles , Córtex Cerebral/fisiologia , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Adulto Jovem
4.
BMC Neurosci ; 13: 91, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22852798

RESUMO

BACKGROUND: There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. RESULTS: Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. CONCLUSIONS: Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Corpo Caloso/irrigação sanguínea , Imageamento por Ressonância Magnética , Adulto , Análise de Variância , Face , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Fibras Nervosas Mielinizadas , Oxigênio/sangue , Estimulação Luminosa , Fatores de Tempo , Transferência de Experiência/fisiologia , Vocabulário , Adulto Jovem
5.
Med Phys ; 44(4): 1479-1493, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28133744

RESUMO

PURPOSE: The focus of this work was to improve the available kV image quality for continuous intrafraction monitoring of the prostate during volumetric modulated arc therapy. This is investigated using a novel blade collimation system enabling tube current modulated (TCM) volume-of-interest (VOI) imaging of prostate fiducial markers during radiotherapy, and Monte Carlo simulation of MV scatter. MATERIALS AND METHODS: A four-blade dynamic kV collimator was used to track a VOI containing gold fiducial markers embedded in a dynamic pelvis phantom during gantry rotation. For each fiducial, a VOI margin around each marker was set to be 2σ of the population covariance matrix characterizing prostate motion. This was used to conform to a single or several fiducials and compared to a static field. DRRs were used to calculate the kV attenuation for each VOI as a function of angle and used to optimize x-ray tube current during acquisition. Image quality was assessed with regard to contrast-to-noise ratio (CNR), fiducial detectability, and imaging dose. Monte Carlo simulations in EGSnrc were used to calculate the imaging dose to the phantom and MV scatter fluence to the imaging panel. RESULTS: Fiducials can be accurately located using a VOI containing a single or several fiducials using a relatively high constant kV output. However, when using a 6 × 6 cm2 field the dose can be upwards of 1.5 Gy in bone for constant kV output and 3.1 Gy when applying TCM at 1 Hz imaging over the course of 40 fractions. This can be mitigated through tailoring the imaging field to a single or several fiducials, in which the integral dose is reduced by a factor of 15.6 and 3.7, respectively. For a constant MV treatment field size, the scattered fluence reaching the kV panel varies by less than a factor of two for a completely rotation of the gantry. However, the MV scatter spectrum overlaps with the detector response for a deleterious effect, with a peak MV scatter energy of approximately 100 keV. TCM can be used to overcome the variability in image quality throughout the rotation and therefore improve fiducial CNR and detectability during periods of high kV attenuation. CONCLUSIONS: The combination of VOI and TCM introduces an advantageous approach in intrafraction monitoring of the prostate during radiotherapy by both reducing and localizing the imaging dose, while improving image quality and fiducial detectability during periods of high kV attenuation. In addition, the influence of MV scatter has been shown to be most important in low attenuation regions, with a variation by a factor of two.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Tomografia Computadorizada de Feixe Cônico , Marcadores Fiduciais , Humanos , Masculino , Método de Monte Carlo
6.
Med Phys ; 43(5): 2558, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147366

RESUMO

PURPOSE: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. METHODS: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmable translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. RESULTS: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left-right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 µGy/mAs, depending on location in the phantom. CONCLUSIONS: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system. Three-dimensional position estimation from monoscopic imaging permits continuous, uninterrupted intrafraction motion monitoring even in the presence of gantry rotation, which may block kV sources or imagers. This potentially allows for more accurate treatment delivery, by ensuring that the prostate does not deviate substantially from the initial setup position.


Assuntos
Imageamento Tridimensional/métodos , Movimento (Física) , Próstata , Radiografia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Marcadores Fiduciais , Ouro , Humanos , Imageamento Tridimensional/instrumentação , Masculino , Modelos Anatômicos , Aceleradores de Partículas , Imagens de Fantasmas , Próstata/efeitos da radiação , Radiografia/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Reprodutibilidade dos Testes
7.
J Neurosci Methods ; 219(2): 312-23, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23958749

RESUMO

Many studies have investigated test-retest reliability of active voxel classification for fMRI, which is increasingly important for emerging clinical applications. The implicit impact of voxel-wise thresholding on this type of reliability has previously been under-appreciated. This has had two detrimental effects: (1) reliability studies use different fixed thresholds, making comparison of results is challenging; (2) typical studies do not assess reliability at the individual level, which could provide information for selecting activation thresholds. To show the limitations of traditional fixed-threshold approaches, we investigated the threshold dependence of fMRI reliability measures, with the goal of developing an automated threshold selection routine. For this purpose, we demonstrated threshold dependence of both novel (ROC-reliability or ROC-r) and established (Rombouts overlap or RR) reliability measures. Both methods rely minimally on statistical assumptions, and provide a data-driven summary of the threshold-reliability relationship. We applied these methods to data from eight subjects performing a simple finger tapping task across repeated fMRI sessions. We showed that the reliability measures varied dramatically with threshold. This variation depended strongly on the individual tested. Finally, we demonstrated novel procedures using ROC-r and overlap analysis to optimize thresholds on a case-by-case basis. Ultimately, a method to determine robust individual-level activation maps represents a critical advance for fMRI as a diagnostic tool.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Área Sob a Curva , Humanos , Curva ROC , Reprodutibilidade dos Testes
8.
PLoS One ; 8(3): e58130, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483983

RESUMO

Functional magnetic resonance imaging (fMRI) activation in white matter is controversial. Given that many of the studies that report fMRI activation in white matter used high field MRI systems, we investigated the field strength dependence of sensitivity to white matter fMRI activation. In addition, we evaluated the temporal signal to noise ratio (tSNR) of the different tissue types as a function of field strength. Data were acquired during a motor task (finger tapping) at 1.5 T and 4 T. Group and individual level activation results were considered in both the sensorimotor cortex and the posterior limb of the internal capsule. We found that sensitivity increases associated with field strength were greater for white matter than gray matter. The analysis of tSNR suggested that white matter might be less susceptible to increases in physiological noise related to increased field strength. We therefore conclude that high field MRI may be particularly advantageous for fMRI studies aimed at investigating activation in both gray and white matter.


Assuntos
Dedos/fisiologia , Imageamento por Ressonância Magnética/métodos , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Campos Magnéticos , Masculino , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA