Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 55(4): 952-970, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33759226

RESUMO

Anxiety and trauma-related disorders, such as post-traumatic stress disorder (PTSD), are debilitating mental illnesses with great personal and socioeconomic costs. Examining memory formation and relevant behavioural responding associated with aversive stimuli may improve our understanding of the neurobiology underlying fear memory processing and PTSD treatment. The neurocircuitry underpinning learned fear and its inhibition through extinction is complex, involving synergistic interactions between different neurotransmitter systems in inter-connected brain areas. Endocannabinoid and noradrenergic transmission have both been implicated separately in fear memory processing and PTSD, but potential interactions between these systems in relation to fear extinction have received little attention to date. Their receptors are expressed together in brain areas crucial for fear extinction, which is enhanced by both cannabinoid and noradrenergic receptor activation in these areas. Moreover, cannabinoid signalling modulates the activity of locus coeruleus noradrenaline (NA) neurons and the release of NA in the medial prefrontal cortex, a brain area that is crucial for fear extinction. Interestingly, endocannabinoid-noradrenergic system interactions have been shown to regulate the encoding and retrieval of fear memory. Thus, noradrenergic regulation of fear extinction may also be driven indirectly in part via cannabinoid receptor signalling. In this perspective paper, we collate the available relevant literature and propose a synergistic role for the endocannabinoid and noradrenergic systems in regulating fear extinction, the study of which may further our understanding of the neurobiological substrates of PTSD and its treatment.


Assuntos
Canabinoides , Transtornos de Estresse Pós-Traumáticos , Endocanabinoides , Extinção Psicológica , Medo/fisiologia , Humanos , Norepinefrina
2.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012600

RESUMO

Cannabidiol, the main non-psychotropic constituent of cannabis, has potential as a treatment for anxiety-related disorders since it reduces learned fear expression and enhances fear extinction. The return of fear over time after successful extinction and stress-induced extinction resistance are potential barriers to the treatment of these disorders with extinction-based psychological therapy. In two experiments using rats subjected to auditory fear conditioning, we determined the effects of systemic cannabidiol treatment on (1) delayed extinction and later spontaneous fear recovery, and (2) extinction resistance caused by immediate extinction (the immediate extinction deficit (IED)). In Experiment 1, cannabidiol was given before delayed extinction occurring 24 h after conditioning, with extinction recall and spontaneous fear recovery tested drug-free 1 and 21 days after extinction, respectively. We found that cannabidiol had no effect on extinction recall but it prevented spontaneous fear recovery. In Experiment 2, the IED procedure was first validated, with immediate extinction occurring 30 min after conditioning. We confirmed that immediate extinction impaired extinction recall, compared to delayed extinction. Next, cannabidiol was given before immediate or no extinction, with extinction recall tested drug-free the next day. We found that cannabidiol rescued the IED, which did not involve effects on fear memory consolidation. In summary, cannabidiol prevented spontaneous fear recovery after delayed extinction and ameliorated extinction resistance caused by immediate extinction. Although the pharmacological mechanisms underlying these effects remain to be determined, our results add to evidence indicating that cannabidiol might prove useful as an adjunct for potentiating the psychological treatment of anxiety-related disorders.


Assuntos
Canabidiol , Medo , Animais , Canabidiol/farmacologia , Condicionamento Clássico , Condicionamento Psicológico , Extinção Psicológica , Ratos
3.
Eur J Neurosci ; 54(8): 6933-6947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32383309

RESUMO

Learning to associate certain contexts with threat and adapting to changing environmental contingencies by learning that such contexts are no longer associated with threat are both crucial for survival. Research over the last few decades has made considerable progress in determining the brain areas involved in the encoding, retrieval and extinction of contextual fear. These studies have identified the hippocampus and amygdala, along with the prefrontal cortex and other inter-connected brain areas, as key players in contextual fear processing. In contrast to the neural circuit basis of contextual fear, the neurochemical mechanisms involved in its regulation remain poorly understood. Dopamine is well known for its role in appetitive learning but this neurotransmitter is also important for other types of learning, including spatial and aversive memory processing. Dopamine is ideally positioned to regulate contextual fear given that the areas involved receive dopamine input and express dopamine receptors. Moreover, neuronal activity, functional connectivity and synaptic plasticity in this neural circuitry are modulated by dopamine receptor signalling. Here, we review the evidence indicating that dopamine regulates various contextual fear processes, along with the more recent studies that have begun to elucidate the brain areas and neurophysiological mechanisms involved. From a fundamental research perspective, understanding how dopamine regulates contextual fear will lead to novel insights on the neurochemical modulation of neural circuit function underlying memory processing. This research may also have translational relevance given that contextual fear conditioning and extinction also provide useful preclinical models of certain aspects of anxiety-related disorders and their treatment.


Assuntos
Dopamina , Medo , Tonsila do Cerebelo , Extinção Psicológica , Hipocampo , Córtex Pré-Frontal
4.
Eur J Neurosci ; 52(1): 2466-2486, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31631413

RESUMO

Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.


Assuntos
Medo , Caracteres Sexuais , Transtornos de Ansiedade , Encéfalo , Extinção Psicológica , Feminino , Humanos , Aprendizagem , Masculino
5.
Curr Psychiatry Rep ; 21(6): 38, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31030284

RESUMO

PURPOSE OF REVIEW: Anxiety- and trauma-related disorders are prevalent and debilitating mental illnesses associated with a significant socioeconomic burden. Current treatment approaches often have inadequate therapeutic responses, leading to symptom relapse. Here we review recent preclinical and clinical findings on the potential of cannabinoids as novel therapeutics for regulating fear and anxiety. RECENT FINDINGS: Evidence from preclinical studies has shown that the non-psychotropic phytocannabinoid cannabidiol and the endocannabinoid anandamide have acute anxiolytic effects and also regulate learned fear by dampening its expression, enhancing its extinction and disrupting its reconsolidation. The findings from the relevant clinical literature are still very preliminary but are nonetheless encouraging. Based on this preclinical evidence, larger-scale placebo-controlled clinical studies are warranted to investigate the effects of cannabidiol in particular as an adjunct to psychological therapy or medication to determine its potential utility for treating anxiety-related disorders in the future.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Ansiedade/tratamento farmacológico , Canabinoides/uso terapêutico , Medo/efeitos dos fármacos , Canabidiol , Humanos
6.
Neurobiol Learn Mem ; 133: 196-203, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423522

RESUMO

Post-traumatic stress disorder (PTSD) is more prevalent in women than men. PTSD is characterized by overgeneralization of fear to innocuous stimuli and involves impaired inhibition of learned fear by cues that predict safety. While evidence indicates that learned fear inhibition through extinction differs in males and females, less is known about sex differences in fear discrimination and safety learning. Here we examined auditory fear discrimination in male and female rats. In Experiment 1A, rats underwent 1-3days of discrimination training consisting of one tone predicting threat (CS+; presented with footshock) and another tone predicting safety (CS-; presented alone). Females, but not males, discriminated between the CS+ and CS- after one day of training. After 2-3days of training, however, males discriminated whereas females generalized between the CS+ and CS-. In Experiment 1B, females showed enhanced anxiety-like behaviour and locomotor activity in the open field, although these results were unlikely to explain the sex differences in fear discrimination. In Experiment 2, we found no differences in shock sensitivity between males and females. In Experiment 3, males and females again discriminated and generalized, respectively, after three days of training. Moreover, fear generalization in females resulted from impaired safety learning, as shown by a retardation test. Whereas subsequent fear conditioning to the previous CS- retarded learning in males, females showed no such retardation. These results suggest that, while females show fear discrimination with limited training, they show fear generalization with extended training due to impaired safety learning.


Assuntos
Percepção Auditiva/fisiologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Discriminação Psicológica/fisiologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Ratos
7.
Neurobiol Learn Mem ; 135: 66-72, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27344940

RESUMO

Sex differences in learned fear expression and extinction involve the medial prefrontal cortex (mPFC). We recently demonstrated that enhanced learned fear expression during auditory fear extinction and its recall is linked to persistent theta activation in the prelimbic (PL) but not infralimbic (IL) cortex of female rats. Emerging evidence indicates that gamma oscillations in mPFC are also implicated in the expression and extinction of learned fear. Therefore we re-examined our in vivo electrophysiology data and found that females showed persistent PL gamma activation during extinction and a failure of IL gamma activation during extinction recall. Altered prefrontal gamma oscillations thus accompany sex differences in learned fear expression and its extinction. These findings are relevant for understanding the neural basis of post-traumatic stress disorder, which is more prevalent in women and involves impaired extinction and mPFC dysfunction.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Ritmo Gama/fisiologia , Córtex Pré-Frontal/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Ratos
8.
Learn Mem ; 21(2): 55-60, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24429423

RESUMO

Anxiety disorders, such as post-traumatic stress, are more prevalent in women and are characterized by impaired inhibition of learned fear and medial prefrontal cortex (mPFC) dysfunction. Here we examined sex differences in fear extinction and mPFC activity in rats. Females showed more learned fear expression during extinction and its recall, but not fear conditioning. They also showed more spontaneous fear recovery and more contextual fear before extinction and its recall. Moreover, enhanced learned fear expression in females was associated with sustained prelimbic (PL) cortex activity. These results suggest that sex differences in learned fear expression may involve persistent PL activation.


Assuntos
Condicionamento Psicológico , Extinção Psicológica , Medo , Reação de Congelamento Cataléptica , Rememoração Mental , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Percepção Auditiva , Eletrodos Implantados , Eletrochoque , Feminino , Masculino , Ratos , Caracteres Sexuais , Ritmo Teta , Fatores de Tempo
9.
Behav Neurosci ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298233

RESUMO

Healthy cognition requires inhibitory modulation of associative learning; conversely, impaired inhibitory discrimination is implicated in behavioral disorders. The medial prefrontal cortex (mPFC) and its dopamine innervation are key to understanding inhibition and impulsivity. We therefore examined the role of prelimbic and infralimbic cortices in within-subjects appetitive feature-negative learning using microinfusions of (a) the gamma-aminobutyric acid-A receptor agonist muscimol (0.25 µg in 1.0 µl; N = 35), (b) the dopamine D1 receptor agonist SKF-81297 (0.1 µg in 1.0 µl; N = 33), and (c) the dopamine D1 receptor antagonist SCH-23390 (5 µg in 1.0 µl; N = 35). A conditioned stimulus (CS) was followed by food, but on trials on which the CS (A+) was compounded with the inhibitory cue (AX-), the food delivery was canceled. Difference scores (CS-preCS responding) were used to measure learning. All three experiments showed the feature-negative discrimination (A+/AX-), as decreased responding to AX- versus A+. This discrimination was reduced but preserved following muscimol infusions in Experiment 1. Similarly, in Experiments 2 and 3, infusions of SKF-81297 and SCH-23390 were both without effect on the acquisition of the discrimination. Like muscimol, SCH-23390 reduced difference score responding, consistent with nonspecific effects on the (expression of) learning. Thus, there was no evidence to suggest that inactivation of prelimbic or infralimbic cortices impaired feature-negative discrimination learning and no evidence for dopaminergic modulation of such learning in the medial prefrontal cortex either. These results are discussed in the context of the nonspecific effects of the infusions and the overall inconsistent performance in summation and retardation tests of conditioned inhibition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

10.
PLoS One ; 18(8): e0290232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594971

RESUMO

Three groups of participants (largely recruited from the UK) completed a survey to examine attitudes to the use of animals in biomedical research, after reading the lay (N = 182) or technical (N = 201) summary of a research project, or no summary (N = 215). They then completed a survey comprising the animal attitude (AAS), animal purpose (APQ), belief in animal mind (BAM) and empathy quotient (EQ) scales. The APQ was adapted to assess attitudes towards the use of animals for research into disorders selected to be perceived as controllable and so 'blameworthy' and potentially stigmatised (addiction and obesity) and 'psychological' (schizophrenia and addiction) versus 'physical' (cardiovascular disease and obesity), across selected species (rats, mice, fish pigs and monkeys). Thus, the APQ was used to examine how the effects of perceived controllability and the nature of the disorder affected attitudes to animal use, in different species and in the three summary groups. As expected, attitudes to animal use as measured by the AAS and the APQ (total) correlated positively with BAM and EQ scores, consistent with the assumption that the scales all measured pro-welfare attitudes. Participants in the two research summary groups did not differentiate the use of rats, mice and fish (or fish and pigs in the technical summary group), whereas all species were differentiated in the no summary group. Participants given the lay summary were as concerned about the use of animals for schizophrenia as for addiction research. APQ ratings otherwise indicated more concern for animals used for addiction research (and for obesity compared to cardiovascular disease in all summary groups). Therefore, the information provided by a research project summary influenced attitudes to use of animals in biomedical research. However, there was no overall increase in agreement with animal use in either of the summary groups.


Assuntos
Pesquisa Biomédica , Doenças Cardiovasculares , Camundongos , Ratos , Animais , Suínos , Estigma Social , Obesidade , Atitude
11.
Artigo em Inglês | MEDLINE | ID: mdl-37451593

RESUMO

Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination. Kv3 voltage-gated potassium channels are highly expressed in these neurons and are important for controlling their activity, suggesting that pharmacological Kv3 modulation may regulate fear discrimination. We determined the effect of the positive Kv3 modulator AUT00206 given systemically to female rats undergoing limited or extended auditory fear discrimination training, which we have previously shown results in more discrimination or generalization, respectively, based on freezing at retrieval. We also characterized darting and other active fear-related responses. We found that limited training resulted in more discrimination based on freezing, which was unaffected by AUT00206. In contrast, extended training resulted in more generalization based on freezing and the emergence of discrimination based on darting during training and, to a lesser extent, at retrieval. Importantly, AUT00206 given before extended training had dissociable effects on fear discrimination and expression at retrieval depending on the response examined. While AUT00206 mitigated generalization without affecting expression based on freezing, it reduced expression without affecting discrimination based on darting, although darting levels were low overall. These results indicate that pharmacological Kv3 modulation regulates fear discrimination and expression in a response-dependent manner. They also raise the possibility that targeting Kv3 channels may ameliorate perturbed cognition and emotional regulation in psychiatric disease.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Ratos , Feminino , Animais , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Neurônios/fisiologia , Interneurônios/metabolismo , Medo
12.
Sci Rep ; 13(1): 17631, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848657

RESUMO

Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA. D1R blockade altered DH-VH and reduced VH-PL and VH-BLA synchrony during CFC, as inferred from theta and gamma coherence and theta-gamma coupling. D1R blockade also impaired CFC, as indicated by decreased freezing at retrieval, which was characterized by altered DH-VH and reduced VH-PL, VH-BLA, and PL-BLA synchrony. This reduction in VH-PL-BLA synchrony was not fully accounted for by non-specific locomotor effects, as revealed by comparing between epochs of movement and freezing in the controls. These results suggest that D1Rs regulate CFC by modulating synchronized oscillations within the hippocampus-prefrontal-amygdala circuit. They also add to growing evidence indicating that this circuit synchrony at retrieval reflects a neural signature of learned fear.


Assuntos
Dopamina , Receptores de Dopamina D1 , Ratos , Animais , Dopamina/farmacologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Medo/fisiologia
13.
Acta Trop ; 237: 106729, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36280206

RESUMO

We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 µM and 200 µM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.


Assuntos
Acanthamoeba castellanii , Camellia sinensis , Animais , Cães , Humanos , Cafeína/farmacologia , Solventes/farmacologia , Trofozoítos
14.
Front Psychiatry ; 13: 885146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032247

RESUMO

The endocannabinoid system has been implicated in both social and cognitive processing. The endocannabinoid metabolism inhibitor, URB597, dose-dependently improves non-social memory in adult Wistar and Sprague Dawley rats, whereas its effect on social interaction (SI) is affected by both rat strain and drug dose. Lister Hooded rats consistently respond differently to drug treatment in general compared with albino strains. This study sought to investigate the effects of different doses of URB597 on social and non-social memory in Lister Hooded rats, as well as analyzing the behavioral composition of the SI. Males were tested for novel object recognition (NOR), social preference (between an object and an unfamiliar rat), social novelty recognition (for a familiar vs. unfamiliar rat) and SI with an unfamiliar rat. URB597 (0.1 or 0.3 mg/kg) or vehicle was given 30 min before testing. During SI testing, total interaction time was assessed along with time spent on aggressive and explorative behaviors. Lister Hooded rats displayed expected non-social and social memory and social preference, which was not affected by URB597. During SI, URB597 did not affect total interaction time. However, the high dose increased aggression, compared to vehicle, and decreased anogenital sniffing, compared to the low dose of URB597. In summary, URB597 did not affect NOR, social preference or social recognition memory but did have subtle behavioral effects during SI in Lister hooded rats. Based on our findings we argue for the importance of considering strain as well as the detailed composition of behavior when investigating drug effects on social behavior.

15.
Front Pharmacol ; 13: 1082760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588687

RESUMO

Endocannabinoid transmission is emerging as a target for treating anxiety-related disorders, given its regulation of fear extinction. Boosting anandamide levels via inhibition of its metabolism by fatty acid amide hydrolase (FAAH) can enhance extinction, whereas inhibiting monoacylglycerol lipase (MAGL) to elevate 2-arachidonoylglycerol levels can impair extinction. However, whether endocannabinoids regulate fear relapse over time or extinction resistance remains unclear. In two experiments using auditory fear conditioned rats, we examined the effects of the FAAH inhibitor URB597 and the MAGL inhibitor JZL184 administered systemically on 1) spontaneous fear recovery after delayed extinction, and 2) extinction resistance resulting from immediate extinction [the immediate extinction deficit (IED)]. In Experiment 1, URB597 or JZL184 was given immediately after delayed extinction occurring 24 h after conditioning. Extinction recall and spontaneous fear recovery were tested drug-free 1 and 21 days later, respectively. We found no effects of either drug on extinction recall or spontaneous fear recovery. In Experiment 2, URB597 or JZL184 was given before immediate extinction occurring 30 min after conditioning and extinction recall was tested drug-free the next day. We also examined the effects of propranolol, a beta-adrenoceptor antagonist that can rescue the IED, as a positive control. JZL184 enhanced fear expression and impaired extinction learning but we found no lasting effects of URB597 or JZL184 on cued extinction recall. Propranolol reduced fear expression but, unexpectedly, had no enduring effect on extinction recall. The results are discussed in relation to various methodological differences between previous studies examining endocannabinoid and adrenergic regulation of fear extinction.

16.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980662

RESUMO

Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.


Assuntos
Medo , Hipocampo , Animais , Condicionamento Clássico , Condicionamento Psicológico , Masculino , Memória , Ratos
17.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269433

RESUMO

Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Células Endoteliais , Interações Hospedeiro-Parasita , Humanos , Transcriptoma
18.
Neurobiol Learn Mem ; 96(2): 315-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21689772

RESUMO

The basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) are inter-connected regions involved in fear memory expression. The reciprocal nature of projections between these areas differs along the rostrocaudal extent of BLA. This study investigated the role of functional interactions between BLA and the prelimbic (PL) subregion of mPFC in mediating contextual fear memory. Freezing served as the measure of conditioned fear. Experiments 1-3 examined the effects of left, right or bilateral infusion of bupivacaine into anterior BLA (aBLA), posterior BLA (pBLA) or PL on fear memory expression. Reversible inactivation of left, right or bilateral aBLA impaired fear memory expression. Bilateral inactivation of pBLA or PL also disrupted the expression of fear memory, although left or right inactivation alone had no significant effects in either region. Experiment 4 examined the effects of functionally disconnecting pBLA and PL on contextual fear memory by infusing bupivacaine unilaterally into pBLA and PL in the ipsilateral or contralateral hemisphere. Fear memory expression was impaired by asymmetric inactivation of pBLA and PL; however, a similar effect was also observed with symmetric inactivation of these regions. Bupivacaine infusion did not affect behavior in the open field, likely ruling out non-specific effects of inactivation on innate fear and locomotor activity. These results demonstrate different roles for rostral and caudal BLA in mediating the expression of contextual fear memory. They also raise the possibility that pBLA-PL circuitry is involved in subserving fear memory expression via complex processing mechanisms, although further research is needed to confirm this preliminary finding.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem por Associação/fisiologia , Medo/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Anestésicos Locais/farmacologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Bupivacaína/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos
19.
Cannabis Cannabinoid Res ; 6(1): 7-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614948

RESUMO

Coronavirus disease-19 (COVID-19)-related anxiety and post-traumatic stress symptoms (PTSS) or post-traumatic stress disorder (PTSD) are likely to be a significant long-term issue emerging from the current pandemic. We hypothesize that cannabidiol (CBD), a chemical isolated from Cannabis sativa with reported anxiolytic properties, could be a therapeutic option for the treatment of COVID-19-related anxiety disorders. In the global over-the-counter CBD market, anxiety, stress, depression, and sleep disorders are consistently the top reasons people use CBD. In small randomized controlled clinical trials, CBD (300-800 mg) reduces anxiety in healthy volunteers, patients with social anxiety disorder, those at clinical high risk of psychosis, in patients with Parkinson's disease, and in individuals with heroin use disorder. Observational studies and case reports support these findings, extending to patients with anxiety and sleep disorders, Crohn's disease, depression, and in PTSD. Larger ongoing trials in this area continue to add to this evidence base with relevant patient cohorts, sample sizes, and clinical end-points. Pre-clinical studies reveal the molecular targets of CBD in these indications as the cannabinoid receptor type 1 and cannabinoid receptor type 2 (mainly in fear memory processing), serotonin 1A receptor (mainly in anxiolysis) and peroxisome proliferator-activated receptor gamma (mainly in the underpinning anti-inflammatory/antioxidant effects). Observational and pre-clinical data also support CBD's therapeutic value in improving sleep (increased sleep duration/quality and reduction in nightmares) and depression, which are often comorbid with anxiety. Together these features of CBD make it an attractive novel therapeutic option in COVID-related PTSS that merits investigation and testing through appropriately designed randomized controlled trials.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/etiologia , COVID-19 , Canabidiol/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Humanos
20.
Sci Rep ; 10(1): 6300, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286467

RESUMO

The increased prevalence of post-traumatic stress disorder (PTSD) that is observed in women may involve sex differences in learned fear inhibition and medial prefrontal cortex (mPFC) function. PTSD is characterized by fear overgeneralization involving impaired fear regulation by safety signals. We recently found that males show fear discrimination and females show fear generalization involving reduced safety signalling after extended fear discrimination training. Here we determined if these sex differences involve altered mPFC function. Male and female rats underwent three days of auditory fear discrimination training, where one tone (CS+) was paired with footshock and another tone (CS-) was presented alone. Local field potentials were recorded from prelimbic (PL) and infralimbic (IL) mPFC during retrieval. We found that males discriminated and females generalized based on cue-induced freezing at retrieval. This was accompanied by sex differences in basal theta and gamma oscillations in PL and IL. Importantly, males also showed PL/IL theta activation during safety signalling by the CS- and IL gamma activation in response to the threat-related CS+, both of which were absent in females. These results add to growing evidence indicating that sex differences in learned fear inhibition are associated with altered mPFC function.


Assuntos
Percepção Auditiva/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Feminino , Ritmo Gama/fisiologia , Generalização Psicológica/fisiologia , Humanos , Masculino , Ratos , Fatores Sexuais , Transtornos de Estresse Pós-Traumáticos/psicologia , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA