Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 49(30): 6400-10, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20568730

RESUMO

Pantothenate synthetase (PS, EC 6.3.2.1) is the last enzyme in the pantothenate biosynthesis pathway, a metabolic pathway identified as a potential target for new antimicrobials. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Here we report the overexpression, purification, enzyme assay, and tertiary structure of PS from Staphylococcus aureus. PS activity was experimentally confirmed, indicating a k(cat) value comparable to those of enzymes from other organisms. The structures of the apoenzyme and the reaction intermediate (pantoyl adenylate; PA) complex were determined by X-ray crystallography to resolutions of 2.5 and 1.85 A, respectively. Structural analysis indicated that the apoenzyme adopts an open and relatively mobile structure, while the complex structure is closed and entirely rigid. Structural comparison of the apoenzyme and the complex revealed how S. aureus PS undergoes open/close conformational change, and also determined the key interactions with the adenine ring of PA for a hinge bending domain closure. In the complex structure, PA and acetate are bound in the active site. We suggest that the acetate mimics the substrate beta-alanine. Therefore, the complex structure seems to represent a catalytic state poised for in-line nucleophilic attack on PA. These data also offer an alternative strategy for designing novel compounds that selectively inhibit PS activity.


Assuntos
Peptídeo Sintases/química , Staphylococcus aureus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Cinética , Ligantes , Peptídeo Sintases/genética , Peptídeo Sintases/isolamento & purificação , Peptídeo Sintases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
2.
J Proteome Res ; 9(6): 2957-67, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20373734

RESUMO

Loss-of-function mutations in nfxB lead to up-regulation of mexCD-oprJ expression and, consequently, increased resistance to fluoroquinolone antibiotics. Such nfxB mutants have also been reported to exhibit altered virulence profiles, diminished type III secretion system-dependent cytotoxicity, and impaired fitness. However, it is not clear whether these phenotypes are directly linked to NfxB activity or whether inappropriate expression of the MexCD-OprJ pump has pleiotropic effects, thereby impacting indirectly on the phenotype of the cells. The aim of the current work is to investigate which of these possibilities is correct. We isolated a novel type of nfxB mutant generated by a spontaneous polygenic deletion and show that this mutant is rapidly out-competed when grown in a mixed culture with the wild-type progenitor. This competitive fitness defect only manifested itself during the stationary phase of growth. The endoproteome of the nfxB mutant, assessed using 2D-DiGE (difference gel electrophoresis), showed major alterations compared with the wild-type. Consistent with this, we found that the nfxB mutant was impaired in all forms of motility (swimming, swarming, and twitching) as well as in the production of siderophores, rhamnolipid, secreted protease, and pyocyanin. Further investigation showed that the exoproteome, endometabolome, and exometabolome of the nfxB mutant were all globally different compared with the wild-type. The exometabolome of the nfxB mutant was enriched in a selection of long chain fatty acids raising the possibility that these might be substrates for the MexCD-OprJ pump. The nfxB mutant metabotype could be complemented by expression of nfxB in trans and was abolished in an nfxB mexD double mutant, suggesting that inappropriate overexpression of a functional MexCD-OprJ efflux pump causes pleiotropic changes. Taken together, our data suggest that many of the nfxB mutant phenotypes are not caused by the direct effects of the NfxB regulator, but instead by inappropriate mexCD-oprJ expression. Furthermore, the pleiotropic nature of the phenotypes indicate that these may simply reflect the globally dysregulated physiology of the strain.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/fisiologia , Pseudomonas aeruginosa/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel Bidimensional , Proteínas de Membrana Transportadoras/metabolismo , Metaboloma , Mutação , Fenótipo , Análise de Componente Principal , Proteoma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA