Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628142

RESUMO

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Assuntos
Centrômero/metabolismo , Cinesinas/metabolismo , Meiose , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrômero/genética , Cromossomos de Plantas , Evolução Molecular , Haplótipos , Hibridização in Situ Fluorescente , Cinesinas/antagonistas & inibidores , Cinesinas/classificação , Cinesinas/genética , Modelos Genéticos , Mutagênese , Filogenia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sequenciamento Completo do Genoma , Zea mays/genética
2.
PLoS Genet ; 19(12): e1011086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134220

RESUMO

Structural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated for de novo genome assemblies of 26 diverse inbred maize lines. We generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both simple and complex connections between TEs and structural variants. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that within these recently diverged genomic regions, deletions of transposable elements likely account for more structural variation events and base pairs than insertions. These deletions are often large structural variants containing multiple transposable elements. Combined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.


Assuntos
Elementos de DNA Transponíveis , Zea mays , Humanos , Elementos de DNA Transponíveis/genética , Zea mays/genética , Genômica
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34934012

RESUMO

Millions of species are currently being sequenced, and their genomes are being compared. Many of them have more complex genomes than model systems and raise novel challenges for genome alignment. Widely used local alignment strategies often produce limited or incongruous results when applied to genomes with dispersed repeats, long indels, and highly diverse sequences. Moreover, alignment using many-to-many or reciprocal best hit approaches conflicts with well-studied patterns between species with different rounds of whole-genome duplication. Here, we introduce Anchored Wavefront alignment (AnchorWave), which performs whole-genome duplication-informed collinear anchor identification between genomes and performs base pair-resolved global alignment for collinear blocks using a two-piece affine gap cost strategy. This strategy enables AnchorWave to precisely identify multikilobase indels generated by transposable element (TE) presence/absence variants (PAVs). When aligning two maize genomes, AnchorWave successfully recalled 87% of previously reported TE PAVs. By contrast, other genome alignment tools showed low power for TE PAV recall. AnchorWave precisely aligns up to three times more of the genome as position matches or indels than the closest competitive approach when comparing diverse genomes. Moreover, AnchorWave recalls transcription factor-binding sites at a rate of 1.05- to 74.85-fold higher than other tools with significantly lower false-positive alignments. AnchorWave complements available genome alignment tools by showing obvious improvement when applied to genomes with dispersed repeats, active TEs, high sequence diversity, and whole-genome duplication variation.


Assuntos
Genoma de Planta , Polimorfismo Genético , Alinhamento de Sequência , Software , Zea mays/genética
4.
PLoS Genet ; 17(10): e1009768, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648488

RESUMO

Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. Genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between attributes of the genomic environment and the survival of TE copies and families. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences reveal a diversity of survival strategies of TE families. Together these generate a rich ecology of the genome, with each TE family representing the evolution of a distinct ecological niche. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Zea mays/genética , Ecossistema , Evolução Molecular , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Análise de Sequência de DNA/métodos
5.
Nature ; 546(7659): 524-527, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28605751

RESUMO

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imagem Individual de Molécula/métodos , Zea mays/genética , Centrômero/genética , Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas , Produtos Agrícolas/genética , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Genes de Plantas/genética , Anotação de Sequência Molecular , Óptica e Fotônica , Filogenia , RNA Mensageiro/análise , RNA Mensageiro/genética , Padrões de Referência , Sorghum/genética
6.
Proc Natl Acad Sci U S A ; 117(5): 2526-2534, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964817

RESUMO

The seasonal timing of seed germination determines a plant's realized environmental niche, and is important for adaptation to climate. The timing of seasonal germination depends on patterns of seed dormancy release or induction by cold and interacts with flowering-time variation to construct different seasonal life histories. To characterize the genetic basis and climatic associations of natural variation in seed chilling responses and associated life-history syndromes, we selected 559 fully sequenced accessions of the model annual species Arabidopsis thaliana from across a wide climate range and scored each for seed germination across a range of 13 cold stratification treatments, as well as the timing of flowering and senescence. Germination strategies varied continuously along 2 major axes: 1) Overall germination fraction and 2) induction vs. release of dormancy by cold. Natural variation in seed responses to chilling was correlated with flowering time and senescence to create a range of seasonal life-history syndromes. Genome-wide association identified several loci associated with natural variation in seed chilling responses, including a known functional polymorphism in the self-binding domain of the candidate gene DOG1. A phylogeny of DOG1 haplotypes revealed ancient divergence of these functional variants associated with periods of Pleistocene climate change, and Gradient Forest analysis showed that allele turnover of candidate SNPs was significantly associated with climate gradients. These results provide evidence that A. thaliana's germination niche and correlated life-history syndromes are shaped by past climate cycles, as well as local adaptation to contemporary climate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sementes/química , Alelos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Germinação , Características de História de Vida , Polimorfismo Genético , Estações do Ano , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
7.
New Phytol ; 234(2): 719-734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090191

RESUMO

The relevance of flowering time variation and plasticity to climate adaptation requires a comprehensive empirical assessment. We investigated natural selection and the genetic architecture of flowering time in Arabidopsis through field experiments in Europe across multiple sites and seasons. We estimated selection for flowering time, plasticity and canalization. Loci associated with flowering time, plasticity and canalization by genome-wide association studies were tested for a geographic signature of climate adaptation. Selection favored early flowering and increased canalization, except at the northernmost site, but was rarely detected for plasticity. Genome-wide association studies revealed significant associations with flowering traits and supported a substantial polygenic inheritance. Alleles associated with late flowering, including functional FRIGIDA variants, were more common in regions experiencing high annual temperature variation. Flowering time plasticity to fall vs spring and summer environments was associated with GIGANTEA SUPPRESSOR 5, which promotes early flowering under decreasing day length and temperature. The finding that late flowering genotypes and alleles are associated with climate is evidence for past adaptation. Real-time phenotypic selection analysis, however, reveals pervasive contemporary selection for rapid flowering in agricultural settings across most of the species range. The response to this selection may involve genetic shifts in environmental cuing compared to the ancestral state.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Variação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Estações do Ano
8.
PLoS Genet ; 15(9): e1008291, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498837

RESUMO

DNA methylation and epigenetic silencing play important roles in the regulation of transposable elements (TEs) in many eukaryotic genomes. A majority of the maize genome is derived from TEs that can be classified into different orders and families based on their mechanism of transposition and sequence similarity, respectively. TEs themselves are highly methylated and it can be tempting to view them as a single uniform group. However, the analysis of DNA methylation profiles in flanking regions provides evidence for distinct groups of chromatin properties at different TE families. These differences among TE families are reproducible in different tissues and different inbred lines. TE families with varying levels of DNA methylation in flanking regions also show distinct patterns of chromatin accessibility and modifications within the TEs. The differences in the patterns of DNA methylation flanking TE families arise from a combination of non-random insertion preferences of TE families, changes in DNA methylation triggered by the insertion of the TE and subsequent selection pressure. A set of nearly 70,000 TE polymorphisms among four assembled maize genomes were used to monitor the level of DNA methylation at haplotypes with and without the TE insertions. In many cases, TE families with high levels of DNA methylation in flanking sequence are enriched for insertions into highly methylated regions. The majority of the >2,500 TE insertions into unmethylated regions result in changes in DNA methylation in haplotypes with the TE, suggesting the widespread potential for TE insertions to condition altered methylation in conserved regions of the genome. This study highlights the interplay between TEs and the methylome of a major crop species.


Assuntos
Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Zea mays/genética , Epigênese Genética/genética , Epigenômica/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Genótipo , Haplótipos/genética , Polimorfismo Genético/genética , Análise de Sequência de DNA/métodos
9.
Plant J ; 100(5): 1052-1065, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31381222

RESUMO

Transposable elements (TEs) are ubiquitous components of eukaryotic genomes and can create variation in genome organization and content. Most maize genomes are composed of TEs. We developed an approach to define shared and variable TE insertions across genome assemblies and applied this method to four maize genomes (B73, W22, Mo17 and PH207) with uniform structural annotations of TEs. Among these genomes we identified approximately 400 000 TEs that are polymorphic, encompassing 1.6 Gb of variable TE sequence. These polymorphic TEs include a combination of recent transposition events as well as deletions of older TEs. There are examples of polymorphic TEs within each of the superfamilies of TEs and they are found distributed across the genome, including in regions of recent shared ancestry among individuals. There are many examples of polymorphic TEs within or near maize genes. In addition, there are 2380 gene annotations in the B73 genome that are located within variable TEs, providing evidence for the role of TEs in contributing to the substantial differences in annotated gene content among these genotypes. TEs are highly variable in our survey of four temperate maize genomes, highlighting the major contribution of TEs in driving variation in genome organization and gene content. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://github.com/SNAnderson/maizeTE_variation; https://mcstitzer.github.io/maize_TEs.


Assuntos
Elementos de DNA Transponíveis , Genoma de Planta , Zea mays/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Genótipo , Anotação de Sequência Molecular , Análise de Sequência de DNA/métodos
10.
New Phytol ; 220(2): 395-408, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035321

RESUMO

Contents Summary 395 I. Introduction 395 II. The genetic basis of maize domestication 396 III. The tempo of maize domestication 401 IV. Genetic interactions and selection during maize domestication 401 V. Gene networks of maize domestication alleles 404 VI. Implications of gene interactions on evolution and selection404 VII. Conclusions 405 Acknowledgements 405 References 405 SUMMARY: Domestication is a tractable system for following evolutionary change. Under domestication, wild populations respond to shifting selective pressures, resulting in adaptation to the new ecological niche of cultivation. Owing to the important role of domesticated crops in human nutrition and agriculture, the ancestry and selection pressures transforming a wild plant into a domesticate have been extensively studied. In Zea mays, morphological, genetic and genomic studies have elucidated how a wild plant, the teosinte Z. mays subsp. parviglumis, was transformed into the domesticate Z. mays subsp. mays. Five major morphological differences distinguish these two subspecies, and careful genetic dissection has pinpointed the molecular changes responsible for several of these traits. But maize domestication was a consequence of more than just five genes, and regions throughout the genome contribute. The impacts of these additional regions are contingent on genetic background, both the interactions between alleles of a single gene and among alleles of the multiple genes that modulate phenotypes. Key genetic interactions include dominance relationships, epistatic interactions and pleiotropic constraint, including how these variants are connected in gene networks. Here, we review the role of gene interactions in generating the dramatic phenotypic evolution seen in the transition from teosinte to maize.


Assuntos
Domesticação , Epistasia Genética , Genes de Plantas , Zea mays/genética , Redes Reguladoras de Genes , Seleção Genética
11.
PLoS Genet ; 11(1): e1004915, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569788

RESUMO

Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Transcrição Gênica , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Plântula/genética
12.
Trends Plant Sci ; 29(3): 355-369, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37749022

RESUMO

Genome alignment is one of the most foundational methods for genome sequence studies. With rapid advances in sequencing and assembly technologies, these newly assembled genomes present challenges for alignment tools to meet the increased complexity and scale. Plant genome alignment is technologically challenging because of frequent whole-genome duplications (WGDs) as well as chromosome rearrangements and fractionation, high nucleotide diversity, widespread structural variation, and high transposable element (TE) activity causing large proportions of repeat elements. We summarize classical pairwise and multiple genome alignment (MGA) methods, and highlight techniques that are widely used or are being developed by the plant research community. We also outline the remaining challenges for precise genome alignment and the interpretation of alignment results in plants.


Assuntos
Genoma de Planta , Plantas , Plantas/genética , Genoma de Planta/genética , Elementos de DNA Transponíveis/genética
13.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38895432

RESUMO

Understanding the function and fitness effects of diverse plant genomes requires transferable models. Language models (LMs) pre-trained on large-scale biological sequences can learn evolutionary conservation, thus expected to offer better cross-species prediction through fine-tuning on limited labeled data compared to supervised deep learning models. We introduce PlantCaduceus, a plant DNA LM based on the Caduceus and Mamba architectures, pre-trained on a carefully curated dataset consisting of 16 diverse Angiosperm genomes. Fine-tuning PlantCaduceus on limited labeled Arabidopsis data for four tasks involving transcription and translation modeling demonstrated high transferability to maize that diverged 160 million years ago, outperforming the best baseline model by 1.45-fold to 7.23-fold. PlantCaduceus also enables genome-wide deleterious mutation identification without multiple sequence alignment (MSA). PlantCaduceus demonstrated a threefold enrichment of rare alleles in prioritized deleterious mutations compared to MSA-based methods and matched state-of-the-art protein LMs. PlantCaduceus is a versatile pre-trained DNA LM expected to accelerate plant genomics and crop breeding applications.

16.
Science ; 382(6674): eadg8940, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033071

RESUMO

The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.


Assuntos
Produtos Agrícolas , Domesticação , Hibridização Genética , Zea mays , México , Fenótipo , Zea mays/genética , Variação Genética , Produtos Agrícolas/genética
17.
Genome Biol Evol ; 14(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104327

RESUMO

Recognition of the important role of transposable elements (TEs) in eukaryotic genomes quickly led to a burgeoning literature modeling and estimating the effects of selection on TEs. Much of the empirical work on selection has focused on analyzing the site frequency spectrum (SFS) of TEs. But TE evolution differs from standard models in a number of ways that can impact the power and interpretation of the SFS. For example, rather than mutating under a clock-like model, transposition often occurs in bursts which can inflate particular frequency categories compared with expectations under a standard neutral model. If a TE burst has been recent, the excess of low-frequency polymorphisms can mimic the effect of purifying selection. Here, we investigate how transposition bursts affect the frequency distribution of TEs and the correlation between age and allele frequency. Using information on the TE age distribution, we propose an age-adjusted SFS to compare TEs and neutral polymorphisms to more effectively evaluate whether TEs are under selective constraints. We show that our approach can minimize instances of false inference of selective constraint, remains robust to simple demographic changes, and allows for a correct identification of even weak selection affecting TEs which experienced a transposition burst. The results presented here will help researchers working on TEs to more reliably identify the effects of selection on TEs without having to rely on the assumption of a constant transposition rate.


Assuntos
Evolução Molecular , Seleção Genética , Elementos de DNA Transponíveis/genética , Eucariotos , Frequência do Gene
18.
Plant Genome ; 15(2): e20204, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416423

RESUMO

Alignments of multiple genomes are a cornerstone of comparative genomics, but generating these alignments remains technically challenging and often impractical. We developed the msa_pipeline workflow (https://bitbucket.org/bucklerlab/msa_pipeline) to allow practical and sensitive multiple alignment of diverged plant genomes and calculation of conservation scores with minimal user inputs. As high repeat content and genomic divergence are substantial challenges in plant genome alignment, we also explored the effect of different masking approaches and parameters of the LAST aligner using genome assemblies of 33 grass species. Compared with conventional masking with RepeatMasker, a masking approach based on k-mers (nucleotide sequences of k length) increased the alignment rate of coding sequence and noncoding functional regions by 25 and 14%, respectively. We further found that default alignment parameters generally perform well, but parameter tuning can increase the alignment rate for noncoding functional regions by over 52% compared with default LAST settings. Finally, by increasing alignment sensitivity from the default baseline, parameter tuning can increase the number of noncoding sites that can be scored for conservation by over 76%. Overall, tuning of masking and alignment parameters can generate optimized multiple alignments to drive biological discovery in plants.


Assuntos
Genoma de Planta , Genômica , Sequência de Bases , Fluxo de Trabalho
19.
Genome Biol ; 22(1): 185, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34162419

RESUMO

BACKGROUND: Drought threatens the food supply of the world population. Dissecting the dynamic responses of plants to drought will be beneficial for breeding drought-tolerant crops, as the genetic controls of these responses remain largely unknown. RESULTS: Here we develop a high-throughput multiple optical phenotyping system to noninvasively phenotype 368 maize genotypes with or without drought stress over a course of 98 days, and collected multiple optical images, including color camera scanning, hyperspectral imaging, and X-ray computed tomography images. We develop high-throughput analysis pipelines to extract image-based traits (i-traits). Of these i-traits, 10,080 were effective and heritable indicators of maize external and internal drought responses. An i-trait-based genome-wide association study reveals 4322 significant locus-trait associations, representing 1529 quantitative trait loci (QTLs) and 2318 candidate genes, many that co-localize with previously reported maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local and distant regulatory variants that control the expression of the candidate genes. We use genetic mutation analysis to validate two new genes, ZmcPGM2 and ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the candidate genes as drought-tolerant genetic markers is revealed by genome selection analysis, and 15 i-traits are identified as potential markers for maize drought tolerance breeding. CONCLUSION: Our study demonstrates that combining high-throughput multiple optical phenotyping and GWAS is a novel and effective approach to dissect the genetic architecture of complex traits and clone drought-tolerance associated genes.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta , Proteínas de Plantas/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Zea mays/genética , Secas , Processamento Eletrônico de Dados , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico , Tomografia Computadorizada por Raios X , Zea mays/metabolismo
20.
G3 (Bethesda) ; 9(11): 3673-3682, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31506319

RESUMO

Transposable Elements (TEs) are mobile elements that contribute the majority of DNA sequences in the maize genome. Due to their repetitive nature, genomic studies of TEs are complicated by the difficulty of properly attributing multi-mapped short reads to specific genomic loci. Here, we utilize a method to attribute RNA-seq reads to TE families rather than particular loci in order to characterize transcript abundance for TE families in the maize genome. We applied this method to assess per-family expression of transposable elements in >800 published RNA-seq libraries representing a range of maize development, genotypes, and hybrids. While a relatively small proportion of TE families are transcribed, expression is highly dynamic with most families exhibiting tissue-specific expression. A large number of TE families were specifically detected in pollen and endosperm, consistent with reproductive dynamics that maintain silencing of TEs in the germ line. We find that B73 transcript abundance is a poor predictor of TE expression in other genotypes and that transcript levels can differ even for shared TEs. Finally, by assessing recombinant inbred line and hybrid transcriptomes, complex patterns of TE transcript abundance across genotypes emerged. Taken together, this study reveals a dynamic contribution of TEs to maize transcriptomes.


Assuntos
Elementos de DNA Transponíveis , Zea mays/genética , Endosperma/genética , Pólen/genética , RNA-Seq , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA