Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Dairy Sci ; 107(4): 1967-1979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863286

RESUMO

The prediction of the cheese yield (%CY) traits for curd, solids, and retained water and the amount of fat, protein, solids, and energy recovered from the milk into the curd (%REC) by Bayesian models, using Fourier-transform infrared spectroscopy (FTIR), can be of significant economic interest to the dairy industry and can contribute to the improvement of the cheese process efficiency. The yields give a quantitative measure of the ratio between weights of the input and output of the process, whereas the nutrient recovery allows to assess the quantitative transfer of a component from milk to cheese (expressed in % of the initial weight). The aims of this study were: (1) to investigate the feasibility of using bulk milk spectra to predict %CY and %REC traits, and (2) to quantify the effect of the dairy industry and the contribution of single-spectrum wavelengths on the prediction accuracy of these traits using vat milk samples destined to the production of Grana Padano Protected Designation of Origin cheese. Information from 72 cheesemaking days (in total, 216 vats) from 3 dairy industries were collected. For each vat, the milk was weighed and analyzed for composition (total solids [TS], lactose, protein, and fat). After 48 h from cheesemaking, each cheese was weighed, and the resulting whey was sampled for composition as well (TS, lactose, protein, and fat). Two spectra from each milk sample were collected in the range between 5,011 and 925 cm-1 and averaged before the data analysis. The calibration models were developed via a Bayesian approach by using the BGLR (Bayesian Generalized Linear Regression) package of R software. The performance of the models was assessed by the coefficient of determination (R2VAL) and the root mean squared error (RMSEVAL) of validation. Random cross-validation (CVL) was applied [80% calibration and 20% validation set] with 10 replicates. Then, a stratified cross-validation (SCV) was performed to assess the effect of the dairy industry on prediction accuracy. The study was repeated using a selection of informative wavelengths to assess the necessity of using whole spectra to optimize prediction accuracy. Results showed the feasibility of using FTIR spectra and Bayesian models to predict cheesemaking traits. The R2VAL values obtained with the CVL procedure were promising in particular for the %CY and %REC for protein, ranging from 0.44 to 0.66 with very low RMSEVAL (from 0.16 to 0.53). Prediction accuracy obtained with the SCV was strongly influenced by the dairy factory industry. The general low values gained with the SCV do not permit a practical application of this approach, but they highlight the importance of building calibration models with a dataset covering the largest possible sample variability. This study also demonstrated that the use of the full FTIR spectra may be redundant for the prediction of the cheesemaking traits and that a specific selection of the most informative wavelengths led to improved prediction accuracy. This could lead to the development of dedicated spectrometers using selected wavelengths with built-in calibrations for the online prediction of these innovative traits.


Assuntos
Queijo , Leite , Animais , Leite/química , Queijo/análise , Teorema de Bayes , Lactose/análise , Tilacoides , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária
2.
J Anim Breed Genet ; 141(3): 278-290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38058229

RESUMO

Microsatellite markers (MS) have been widely used for parentage verification in most of the livestock species over the past decades mainly due to their high polymorphic information content. In the genomic era, the spread of genotype information as single-nucleotide polymorphism (SNP) has raised the question to effectively use SNPs also for parentage testing. Despite the clear advantages of SNP panels in terms of cost, accuracy, and automation, the transition from MS to SNP markers for parentage verification is still very slow and, so far, only routinely applied in cattle. A major difficulty during this transition period is the need of SNP data for parents and offspring, which in most cases is not yet feasible due to the genotyping cost. To overcome the unavailability of same genotyping platform during the transition period, in this study we aimed to assess the feasibility of a MS imputation pipeline from SNPs in four native sheep dairy breeds: Comisana (N = 331), Massese (N = 210), Delle Langhe (N = 59) and Sarda (N = 1003). Those sheep were genotyped for 11 MS and with the Ovine SNP50 Bead Chip. Prior to imputation, a quality control (QC) was performed, and SNPs located within a window of 2 Mb from each MS were selected. The core of the developed pipeline was made up of three steps: (a) storing of both MS and SNP data in a Variant Call Format file, (b) masking MS information in a random sample of individuals (10%), (c) imputing masked MS based on non-missing individuals (90%) using an imputation program. The feasability of the proposed methodology was assessed also among different training - testing split ratio, population size, number of flanking SNPs as well as within and among breeds. The accuracy of the MS imputation was assessed based on the genotype concordance as well as at parentage verification level in a subset of animals in which assigned parents' MS were available. A total of 8 MS passed the QC, and 505 SNPs were located within the ±2 Mb window from each MS, with an average of 63 SNPs per MS. The results were encouraging since when excluding the worst imputed MS (OARAE129), and regardless on the analyses performed (within and across breeds) for all breeds, we achieved an overall concordance rate over 94%. In addition, on average, the imputed offspring MS resulted in equivalent parentage outcome in 94% of the cases when compared to verification using original MS, highlighting both the feasibility and the eventual practical advantage of using this imputation pipeline.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Humanos , Ovinos/genética , Animais , Bovinos/genética , Genótipo , Repetições de Microssatélites/genética , Itália
3.
J Dairy Sci ; 106(12): 9071-9077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641255

RESUMO

Costs of production have deeply increased each year in the last decades, breeders are continuously looking for more cost effective and more efficient ways to produce milk. Despite the major signs of progress in productivity, it is fundamental to optimize rather than maximize the performances of the dairy cows. Mastitis is still a highly prevalent disease in the dairy sector which causes several economic losses and environmental effect. Its accurate and early diagnosis is crucial to improve profitability of dairy cows and contribute to a more sustainable dairy industry. Among mastitis reduction strategies, there is the urgent need to implement breeding objectives to select cows displaying mastitis resistance by investigating the genetic mechanisms at the base of the inflammatory response. Therefore, in this study we aimed to further understand the genetic background of the differential somatic cell count (DSCC), which provides thorough insights on the actual inflammatory status of the mammary glands. The objectives of this study were to estimate on a cohort of 20,215 Italian Simmental cows over a 3-yr period: (1) the heritability and repeatability values of somatic cell score (SCS) and DSCC, (2) the genetic and phenotypic correlations between these 2 traits and milk production and milk composition traits, (3) the heritability and repeatability values of SCS and DSCC within class of udder health status. Heritability was low both for SCS (0.06) and DSCC (0.08), whereas the repeatability values for these traits were 0.43 and 0.36, suggesting that the magnitude of cow permanent environmental effect for these traits is remarkable. The genetic and phenotypic correlation of SCS with DSCC was 0.612 and 0.605, respectively. Because both significantly differed from the unit, we must consider those traits as different ones. This latter aspect corroborates the need to consider the DSCC as a further indicator of inflammatory status which might be implemented in the Simmental breed genetic evaluation. It is worthy to mention that heritability estimates for SCS and DSCC were the highest in healthy cows compared with the other udder health classes. This implies that when the udder health status changes, it is most likely due to environmental factors rather than aspects related to the animal's genetics. In contrast, the highest additive genetic variance and heritability found for SCS and DSCC in the healthy group might reveal the potential to further implement breeding strategies to select for healthier animals.


Assuntos
Mastite Bovina , Leite , Humanos , Feminino , Bovinos , Animais , Mastite Bovina/genética , Contagem de Células/veterinária , Contagem de Células/métodos , Fenótipo , Glândulas Mamárias Animais , Itália , Lactação/genética
4.
J Dairy Sci ; 106(10): 6759-6770, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37230879

RESUMO

The objectives of this study were to explore the use of Fourier-transform infrared (FTIR) spectroscopy on individual sheep milk samples for predicting cheese-making traits, and to test the effect of the farm variability on their prediction accuracy. For each of 121 ewes from 4 farms, a laboratory model cheese was produced, and 3 actual cheese yield traits (fresh cheese, cheese solids, and cheese water) and 4 milk nutrient recovery traits (fat, protein, total solids, and energy) in the curd were measured. Calibration equations were developed using a Bayesian approach with 2 different scenarios: (1) a random cross-validation (80% calibration; 20% validation set), and (2) a leave-one-out validation (3 farms used as calibration, and the remaining one as validation set) to assess the accuracy of prediction of samples from external farms, not included in calibration set. The best performance was obtained for predicting the yield and recovery of total solids, justifying for the practical application of the method at sheep population and dairy industry levels. Performances for the remaining traits were lower, but still useful for the monitoring of the milk processing in the case of fresh curd and recovery of energy. Insufficient accuracies were found for the recovery of protein and fat, highlighting the complex nature of the relationships among the milk nutrients and their recovery in the curd. The leave-one-out validation procedure, as expected, showed lower prediction accuracies, as a result of the characteristics of the farming systems, which were different between calibration and validation sets. In this regard, the inclusion of information related to the farm could help to improve the prediction accuracy of these traits. Overall, a large contribution to the prediction of the cheese-making traits came from the areas known as "water" and "fingerprint" regions. These findings suggest that, according to the traits studied, the inclusion of water regions for the development of the prediction equation models is fundamental to maintain a high prediction accuracy. However, further studies are necessary to better understand the role of specific absorbance peaks and their contribution to the prediction of cheese-making traits, to offer reliable tools applicable along the dairy ovine chain.


Assuntos
Queijo , Leite , Animais , Ovinos , Feminino , Leite/química , Teorema de Bayes , Nutrientes , Fenótipo , Água/análise
5.
J Dairy Sci ; 105(7): 5610-5621, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35570042

RESUMO

The objective of this study was to develop formulas based on milk composition of individual goat samples for predicting cheese yield (%CY) traits (fresh curd, milk solids, and water retained in the curd). The specific aims were to assess and quantify (1) the contribution of major milk components (fat, protein, and casein) and udder health indicators (lactose, somatic cell count, pH, and bacterial count) on %CY traits (fresh curd, milk solids, and water retained in the curd); (2) the cheese-making method; and (3) goat breed effects on prediction accuracy of the %CY formulas. The %CY traits were analyzed in duplicate from 600 goats, using an individual laboratory cheese-making procedure (9-MilCA method; 9 mL of milk per observation) for a total of 1,200 observations. Goats were reared in 36 herds and belonged to 6 breeds (Saanen, Murciano-Granadina, Camosciata delle Alpi, Maltese, Sarda, and Sarda Primitiva). Fresh %CY (%CYCURD), total solids (%CYSOLIDS), and water retained (%CYWATER) in the curd were used as response variables. Single and multiple linear regression models were tested via different combinations of standard milk components (fat, protein, casein) and indirect udder health indicators (UHI; lactose, somatic cell count, pH, and bacterial count). The 2 %CY observations within animal were averaged, and a cross-validation (CrV) scheme was adopted, in which 80% of observations were randomly assigned to the calibration (CAL) set and 20% to the validation (VAL) set. The procedure was repeated 10 times to account for sampling variability. Further, the model presenting the best prediction accuracy in CrV (i.e., comprehensive formula) was used in a secondary analysis to assess the accuracy of the %CY predictive formulas as part of the laboratory cheese-making procedure (within-animal validation, WAV), in which the first %CY observation within animal was assigned to CAL, and the second to the VAL set. Finally, a stratified CrV (SCrV) was adopted to assess the %CY traits prediction accuracy across goat breeds, again using the best model, in which 5 breeds were included in CAL and the remaining one in the VAL set. Fitting statistics of the formulas were assessed by coefficient of determination of validation (R2VAL) and the root mean square error of validation (RMSEVAL). In CrV, the formula with the best prediction accuracy for all %CY traits included fat, casein, and UHI (R2VAL = 0.65, 0.96, and 0.23 for %CYCURD, %CYSOLIDS, and %CYWATER, respectively). The WAV procedure showed R2VAL higher than those obtained in CrV, evidencing a low effect of the 9-MilCA method and, indirectly, its high repeatability. In the SCrV, large differences for %CYCURD and %CYWATER among breeds evidenced that the breed is a fundamental factor to consider in %CY predictive formulas. These results may be useful to monitor milk composition and quantify the influence of milk traits in the composite selection indices of specific breeds, and for the direct genetic improvement of cheese production.


Assuntos
Queijo , Animais , Caseínas/análise , Queijo/análise , Cabras , Lactose/análise , Leite/química , Água/análise
6.
J Dairy Sci ; 104(8): 8439-8453, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34053760

RESUMO

Natural variations in milk minerals, their relationships, and their associations with the coagulation process and cheese-making traits present an opportunity for the differentiation of milk destined for high-quality natural products, such as traditional specialties or Protected Designation of Origin (PDO) cheeses. The aim of this study was to quantify the effects of the native contents of Ca, P, Na, K, and Mg on 18 traits describing traditional milk coagulation properties (MCP), curd firming over time (CFt) equation parameters, cheese yield (CY) measures, and nutrient recoveries in the curd (REC) using models that either included or omitted the simultaneous effects of milk fat and casein contents. The results showed that, by including milk fat and casein and the minerals in the statistical model, we were able to determine the specific effects of each mineral on coagulation and cheese-making efficiency. In general, about two-thirds of the apparent effects of the minerals on MCP and the CFt equation parameters are actually mediated by their association with milk composition, especially casein content, whereas only one-third of the effects are direct and independent of milk composition. In the case of cheese-making traits, the effects of the minerals were mediated only negligibly by their association with milk composition. High Ca content had a positive effect on the coagulation pattern and cheese-making traits, favoring water retention in the curd in particular. Phosphorus positively affected the cheese-making traits in that it was associated with an increase in CY in terms of curd solids, and in all the nutrient recovery traits. However, a very high P content in milk was associated with lower fat recovery in the curd. The variation in the Na content in milk only mildly affected coagulation, whereas with regard to cheese-making, protein recovery was negatively associated with high concentrations of this mineral. Potassium seemed not to be actively involved in coagulation and the cheese-making process. Magnesium content tended to slow coagulation and reduce CY measures. Further studies on the relationships of minerals with casein and protein fractions could deepen our knowledge of the role of all minerals in coagulation and the cheese-making process.


Assuntos
Queijo , Animais , Caseínas , Bovinos , Leite , Minerais , Fenótipo
7.
J Dairy Sci ; 104(4): 3927-3935, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589253

RESUMO

Driven by the large amount of goat milk destined for cheese production, and to pioneer the goat cheese industry, the objective of this study was to assess the effect of farm in predicting goat milk-coagulation and curd-firmness traits via Fourier-transform infrared spectroscopy. Spectra from 452 Sarda goats belonging to 14 farms in central and southeast Sardinia (Italy) were collected. A Bayesian linear regression model was used, estimating all spectral wavelengths' effects simultaneously. Three traditional milk-coagulation properties [rennet coagulation time (min), time to curd firmness of 20 mm (min), and curd firmness 30 min after rennet addition (mm)] and 3 curd-firmness measures modeled over time [rennet coagulation time estimated according to curd firmness change over time (RCTeq), instant curd-firming rate constant, and asymptotical curd firmness] were considered. A stratified cross validation (SCV) was assigned, evaluating each farm separately (validation set; VAL) and keeping the remaining farms to train (calibration set) the statistical model. Moreover, a SCV, where 20% of the goats randomly taken (10 replicates per farm) from the VAL farm entered the calibration set, was also considered (SCV80). To assess model performance, coefficient of determination (R2VAL) and the root mean squared error of validation were recorded. The R2VAL varied between 0.14 and 0.45 (instant curd-firming rate constant and RCTeq, respectively), albeit the standard deviation was approximating half of the mean for all the traits. Although average results of the 2 SCV procedures were similar, in SCV80, the maximum R2VAL increased at about 15% across traits, with the highest observed for time to curd firmness of 20 mm (20%) and the lowest for RCTeq (6%). Further investigation evidenced important variability among farms, with R2VAL for some of them being close to 0. Our work outlined the importance of considering the effect of farm when developing Fourier-transform infrared spectroscopy prediction equations for coagulation and curd-firmness traits in goats.


Assuntos
Queijo , Leite , Animais , Teorema de Bayes , Quimosina , Fazendas , Cabras , Itália
8.
J Dairy Sci ; 104(4): 3956-3969, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33612240

RESUMO

The prediction of traditional goat milk coagulation properties (MCP) and curd firmness over time (CFt) parameters via Fourier-transform infrared (FTIR) spectroscopy can be of significant economic interest to the dairy industry and can contribute to the breeding objectives for the genetic improvement of dairy goat breeds. Therefore, the aims of this study were to (1) explore the variability of milk FTIR spectra from 4 goat breeds (Camosciata delle Alpi, Murciano-Granadina, Maltese, and Sarda), and to assess the possible discriminant power of milk FTIR spectra among breeds, (2) assess the viability to predict coagulation traits by using milk FTIR spectra, and (3) quantify the effect of the breed on the prediction accuracy of MCP and CFt parameters. In total, 611 individual goat milk samples were used. Analysis of variance of measured MCP and CFt parameters was carried out using a mixed model including the farm and pendulum as random factors, and breed, parity, and days in milk as fixed factors. Milk spectra for each goat were collected over the spectral range from wavenumber 5,011 to 925 × cm-1. Discriminant analysis of principal components was used to assess the ability of FTIR spectra to identify breed of origin. A Bayesian model was used to calibrate equations for each coagulation trait. The accuracy of the model and the prediction equation was assessed by cross-validation (CRV; 80% training and 20% testing set) and stratified CRV (SCV; 3 breeds in the training set, one breed in the testing set) procedures. Prediction accuracy was assessed by using coefficient of determination of validation (R2VAL), the root mean square error of validation (RMSEVAL), and the ratio performance deviation. Moreover, measured and FTIR predicted traits were compared in the SCV procedure by assessing their least squares means for the breed effect, Pearson correlations, and variance heteroscedasticity. Results showed the feasibility of using FTIR spectra and multivariate analyses to correctly assign milk samples to their breeds of origin. The R2VAL values obtained with the CRV procedure were moderate to high for the majority of coagulation traits, with RMSEVAL and ratio performance deviation values increasing as the coagulation process progresses from rennet addition. Prediction accuracy obtained with the SCV were strongly influenced by the breed, presenting general low values restricting a practical application. In addition, the low Pearson correlation coefficients of Sarda breed for all the traits analyzed, and the heteroscedastic variances of Camosciata delle Alpi, Murciano-Granadina, and Maltese breeds, further indicated that it is fundamental to consider the differences existing among breeds for the prediction of milk coagulation traits.


Assuntos
Queijo , Leite , Animais , Teorema de Bayes , Queijo/análise , Indústria de Laticínios , Feminino , Cabras , Gravidez , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária
9.
J Dairy Sci ; 103(12): 11190-11208, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069399

RESUMO

Different fractions of milk nitrogenous compounds (not only caseins) have different effects on the nutritional value of milk, its coagulation and curd firming properties, and its cheese-making efficiency. To assess different sources of variation, especially the cows' breed and genetic variants of the main protein fractions, milk samples were collected from 1,504 cows belonging to 3 dairy breeds (Holstein-Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds (Simmental, Rendena, and Alpine Grey) reared in 41 multibreed herds. Beyond crude protein, casein (CN), and urea, 7 protein fractions were analyzed using HPLC, and 5 other N fraction traits were calculated. All 15 traits were measured qualitatively (% of milk N) and quantitatively (g/L of milk). The HPLC technique allowed us to discriminate between the main genetic variants of ß-CN, κ-CN, and ß-lactoglobulin and thus to genotype the cows for the CSN2, CSN3, and BLG genes, respectively. Data were analyzed using 2 mixed models, both including the effects of herd-date, breed, parity, and lactation stage, and only one also including the effects of the genotypes of the milk proteins. Breed of cow explained 2 to 36% of phenotypic variability for all the N fractions, with the exception of the urea and total casein contents of milk and the urea and ß-CN proportions of total milk N. Lactation stage had a considerable influence on the amount (g/L) of almost all the protein fractions in milk, but neither the nonprotein N fractions nor the percentage of milk N protein profile were affected. The inclusion of the CSN2, CSN3, and BLG genotypes in the model explained a large part of the total variability in all the milk protein and nonprotein fractions except urea. It also reduced the variance explained by breed and residual factors. An exception was shown by the proportion of αS1-CN variance explained by breed that moved from 13 to 28%. Similarly, for amount (g/L) of ß-CN, the effect of breed became significant (12%), whereas it was almost null before inclusion of genotypes. In terms of percentage of milk N, the genotypes of CSN3 notably affected all the casein fractions, whereas the BLG genotypes had a much greater influence on most noncasein traits. The genotypes of the CSN2 gene exerted an appreciable effect on αS2-CN and not ß-CN, as expected. Comparing the 2 models, we were also able to discriminate the effect of the breed on a milk N fraction, both quantitatively and qualitatively, in 2 quotas: the first due to the milk protein polymorphisms (major genes) and the second due to other genetic factors (polygene), after correcting for the effect of herd-date of sampling, parity, and lactation stage. The knowledge about the detailed milk protein profile of different cattle breeds provided by this study could be of great benefit for the dairy industry, providing new tools for the enhancement of milk payment systems and breeding program designs.


Assuntos
Bovinos/metabolismo , Proteínas do Leite/metabolismo , Leite/metabolismo , Animais , Caseínas/metabolismo , Indústria de Laticínios , Feminino , Genótipo , Lactação , Lactoglobulinas/genética , Paridade , Fenótipo , Especificidade da Espécie
10.
J Dairy Sci ; 103(2): 1352-1365, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837798

RESUMO

The aims of the present research were to quantify the effects of each coagulation trait, traditional milk coagulation properties [MCP: rennet coagulation time (RCT), curd-firming time (k20), and curd firmness at 30 min (a30)], and modeled curd-firming over time (CFt) parameters [estimated rennet coagulation time (RCTeq), curd-firming instant rate constant (kCF), and potential curd firmness (CFP)] directly on the following: (1) recovery of 3 milk components in the curd (%REC), (2) 3 measures of cheese yield (%CY), and (3) 3 daily cheese yield traits (dCY) from goat milk. Cheese-making traits were analyzed using 2 mixed different models, the first to test MCP and the second to test CFt parameters. Pearson correlations were also calculated. Significant and favorable relationships (negative for time intervals and positive for CF measures) were found between the traditional MCP and the CFt parameters and %REC and %CY traits. The effects of milk fat and protein contents were particularly important on all cheese-making traits, with the only exception being the effect of fat content on water retention in cheese (%CYWATER). We found an optimum value of milk k20, associated with the highest recovery of components and cheese yield in solids (%CYSOLIDS). In addition, a lower level of curd water retention and an increased fresh curd yield (%CYCURD) were associated with greater recovery of fat. The collection of all available information during the process of milk coagulation and curd-firming allowed us to discover the effect of RCTeq on %REC traits and %CYSOLIDS, which had not previously been revealed for traditional RCT. Moreover, higher kCF values were associated with increased %CYCURD and %CYSOLIDS. Given that CFt parameters showed a high level of independence from one another, these can also be easily used and characterized in future applications at the industry level. Information provided by traditional and modeled coagulation properties could efficiently support the goat dairy industry and lay the foundations for a quality payment scheme for goat milk.


Assuntos
Queijo/análise , Cabras/metabolismo , Leite/química , Animais , Quimosina/metabolismo , Indústria de Laticínios , Feminino , Fenótipo , Fatores de Tempo , Água/análise
11.
J Dairy Sci ; 103(7): 5830-5843, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32418696

RESUMO

The aims of this study were to explore the variability of milk composition, coagulation properties, and cheese-making traits of the Sarda goat breed, and to investigate the effects of animal and farm factors, and the geographic area (Central-East vs. South-West) of an insular region of Italy, Sardinia. A total of 570 Sarda goats reared in 21 farms were milk-sampled during morning milking. Individual milk samples were analyzed for composition, traditional milk coagulation properties (MCP), modeled curd-firming over time parameters (CFt), and cheese-making traits (cheese yield, %CY; recovery of nutrients, %REC; daily cheese yield, dCY). Farms were classified into 2 categories based on milk energy level (MEL; high or low), defined according to the average net energy of milk daily produced by the lactating goats. Milk yield and composition were analyzed using a mixed model including the fixed effects of MEL, geographic area, days in milk, and parity, and the random effect of farm within MEL and geographic area. Data about MCP, CFt, and the cheese-making process were analyzed using the same model, with the inclusion of the effects of animal and pendulum of the lactodynamograph instrument, allowing the measure of repeatability of these traits. Results showed that animal had greater influence on coagulation and cheese-making traits compared with farm effect. Days in milk influenced milk composition, whose changes partly reflected the modifications of %CY traits. Moreover, large differences were observed between primiparous and multiparous goats: primiparous goats produced less milk of better quality (higher fat, lower somatic cell and bacterial counts) and less cheese, but with higher recovery of fat and protein in the curd, compared with multiparous goats. The repeatability was very high, for both coagulation (84.0 to 98.8%) and cheese-making traits (89.7 to 99.9%). The effect of MEL was significant for daily productions of milk and cheese, coagulation time, and recovery of protein in the curd, which were better in high-MEL farms. As regards geographic area, milk composition and percentage cheese yield were superior in the Central-East area, whereas daily milk and cheese production and MCP were better in the South-West. This result was explainable by the phenomenon of crossbreeding Sarda goats with Maltese bucks, which occurred with greater intensity in the South-West than in the Central-East area of the island. The results provided by this study could be of great interest for the goat dairy sector. Indeed, the methods described in the present study could be applicable for other farming methods, goat breeds, and geographic areas. The collection of a wide range of phenotypes at individual animal level is fundamental for the characterization of local populations and can be used to guarantee breed conservation and the persistence of traditional farming systems, and to increase farmers' profit.


Assuntos
Queijo/análise , Cabras , Leite/química , Animais , Fazendas , Feminino , Itália , Lactação , Leite/fisiologia , Paridade
12.
J Dairy Sci ; 102(11): 9622-9638, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31477307

RESUMO

Near-infrared spectroscopy (NIRS) has been widely used to determine various composition traits of many dairy products in the industry. In the last few years, near-infrared (NIR) instruments have become more and more accessible, and now, portable devices can be easily used in the field, allowing the direct measurement of important quality traits. However, the comparison of the predictive performances of different NIR instruments is not simple, and the literature is lacking. These instruments may use different wavelength intervals and calibration procedures, making it difficult to establish whether differences are due to the spectral interval, the chemometric approach, or the instrument's technology. Hence, the aims of this study were (1) to evaluate the prediction accuracy of chemical contents (5 traits), pH, texture (2 traits), and color (5 traits) of 37 categories of cheese; (2) to compare 3 instruments [2 benchtop, working in reflectance (R) and transmittance (T) mode (NIRS-R and NIRS-T, respectively) and 1 portable device (VisNIRS-R)], using their entire spectral ranges (1100-2498, 850-1048, and 350-1830 nm, respectively, for NIRS-R, NIRS-T and VisNIRS-R); (3) to examine different wavelength intervals of the spectrum within instrument, comparing also the common intervals among the 3 instruments; and (4) to determine the presence of bias in predicted traits for specific cheese categories. A Bayesian approach was used to develop 8 calibration models for each of 13 traits. This study confirmed that NIR spectroscopy can be used to predict the chemical composition of a large number of different cheeses, whereas pH and texture traits were poorly predicted. Color showed variable predictability, according to the trait considered, the instrument used, and, within instrument, according to the wavelength intervals. The predictive performance of the VisNIRS-R portable device was generally better than the 2 laboratory NIRS instruments, whether with the entire spectrum or selected intervals. The VisNIRS-R was found suitable for analyzing chemical composition in real time, without the need for sample uptake and processing. Our results also indicated that instrument technology is much more important than the NIR spectral range for accurate prediction equations, but the visible range is useful when predicting color traits, other than lightness. Specifically for certain categories (i.e., caprine, moldy, and fresh cheeses), dedicated calibrations seem to be needed to obtain unbiased and more accurate results.


Assuntos
Queijo/análise , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Teorema de Bayes , Viés , Calibragem , Cor , Cabras , Fenótipo , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho/métodos
13.
J Dairy Sci ; 102(5): 3947-3955, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30827544

RESUMO

Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.


Assuntos
Queijo/análise , Manipulação de Alimentos/métodos , Cabras , Leite/química , Animais , Cruzamento , Caseínas/análise , Quimosina , Gorduras/análise , Proteínas do Leite/análise
14.
J Dairy Sci ; 102(10): 8648-8657, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31351732

RESUMO

In dairy goats, very little is known about the effect of the 2 most important indirect indicators of udder health [somatic cell count (SCC) and total bacterial count (TBC)] on milk composition and cheese yield, and no information is available regarding the effects of lactose levels, pH, and NaCl content on the recovery of nutrients in the curd, cheese yield traits, and daily cheese yields. Because large differences exist among dairy species, conclusions from the most studied species (i.e., bovine) cannot be drawn for all types of dairy-producing animals. The aims of this study were to quantify, using milk samples from 560 dairy goats, the contemporary effects of a pool of udder health indirect indicators (lactose level, pH, SCC, TBC, and NaCl content) on the recovery of nutrients in the curd (%REC), cheese yield (%CY), and daily cheese yields (dCY). Cheese-making traits were analyzed using a mixed model, with parity, days in milk (DIM), lactose level, pH, SCC, TBC, and NaCl content as fixed effects, and farm, breed, glass tube, and animal as random effects. Results indicated that high levels of milk lactose were associated with reduced total solids recovery in the curd and lower cheese yields, because of the lower milk fat and protein contents in samples rich in lactose. Higher pH correlated with higher recovery of nutrients in the curd and higher cheese yield traits. These results may be explained by the positive correlation between pH and milk fat, protein, and casein in goat milk. High SCC were associated with higher recovery of solids and energy in the curd but lower recovery of protein. The higher cheese yield obtained from milk with high SCC was due to both increased recovery of lactose in the curd and water retention. Bacterial count proved to be the least important factor affecting cheese-making traits, but it decreased daily cheese yields, suggesting that, even if below the legal limits, TBC should be considered in order to monitor flock management and avoid economic losses. The effect of NaCl content on milk composition was linked with lower recovery of all nutrients in the curd during cheese-making. In addition, high milk NaCl content led to reductions in fresh cheese yield and cheese solids. The indirect indicators of the present study significantly affected the cheese-making process. Such information should be considered, to adjust the milk-to-cheese economic value and the milk payment system.


Assuntos
Queijo , Cabras , Glândulas Mamárias Animais/fisiologia , Leite , Valor Nutritivo , Animais , Caseínas/análise , Contagem de Células/veterinária , Feminino , Conteúdo Gastrointestinal , Lactose/análise , Leite/química , Leite/citologia , Leite/microbiologia , Paridade , Gravidez , Cloreto de Sódio/análise
15.
J Dairy Res ; 86(3): 331-336, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31288873

RESUMO

We investigated whether variation of the sheep Growth Hormone Receptor (GHR), Growth Hormone Releasing Hormone Receptor (GHRHR) and Insulin-Like Growth Factor 1 (IGF1) genes were associated with milk coagulation properties (MCP) in sheep. The GHR, GHRHR and IGF1 genes are part of the GH system, which is known to modulate metabolism, growth and reproduction as well as mammogenesis and galactopoiesis in dairy species. A total of 380 dairy Sarda sheep were genotyped for 36 SNPs mapping to these three genes. Traditional MCP were measured as rennet coagulation time (RCT), curd-firming time (k20) and curd firmness at 30 m (a30). Modeling of curd firming over time (CFt) was based on a 60 m lactodynamographic test, generating a total of 240 records of curd firmness (mm) for each milk sample. The model parameters obtained included: the rennet coagulation time as a result of modeling all data available (RCTeq, min); the asymptotic potential value of curd firmness (CFP, mm) at an infinite time; the CF instant rate constant (kCF, %/min); the syneresis instant rate constant (kSR, %/min); the maximum value of CF (CFmax, mm) and the time at achievement of CFmax (tmax, min). Statistical analysis revealed that variation of the GHR gene was significantly associated with RCT, kSR and CFP (P < 0.05). No other significant associations were detected. These findings may be useful for the dairy industry, as well as for selection programs.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Leite/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores da Somatotropina/genética , Ovinos/genética , Animais , Quimosina/metabolismo , Feminino , Genótipo , Itália , Lactação/genética , Leite/química , Especificidade da Espécie
16.
J Dairy Sci ; 101(8): 7236-7247, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29753466

RESUMO

Goat milk and cheese production is continuously increasing and milk composition and coagulation properties (MCP) are useful tools to predict cheesemaking aptitude. The present study was planned to investigate the extension of lactodynamographic analysis up to 60 min in goat milk, to measure the farm and individual factors, and to investigate differences among 6 goat breeds. Daily milk yield (dMY) was recorded and milk samples collected from 1,272 goats reared in 35 farms. Goats were of 6 different breeds: Saanen and Camosciata delle Alpi for the Alpine type, and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. Milk composition (fat, protein, lactose, pH; somatic cell score; logarithmic bacterial count) and MCP [rennet coagulation time (RCT, min), curd-firming time (k20, min), curd firmness at 30, 45, and 60 min after rennet addition (a30, a45, and a60, mm)] were recorded, and daily fat and protein yield (dFPY g/d) was calculated as the sum of fat and protein concentration multiplied by the dMY. Data were analyzed using different statistical models to measure the effects of farm, parity, stage of lactation and breed; lastly, the direct and the indirect effect of breed were quantified by comparing the variance of breed from models with or without the inclusion of linear regression of fat, protein, lactose, pH, bacterial, somatic cell counts, and dMY. Orthogonal contrasts were performed to compare least squares means. Almost all traits exhibited high variability, with coefficients of variation between 32 (for RCT) and 63% (for a30). The proportion of variance regarding dMY, dFPY, and milk composition due to the farm was moderate, whereas for MCP it was low, except for a60, at 69%. Parity affected both yield and quality traits of milk, with least squares means of dMY and dFPY showing an increase and RCT and curd firmness traits a decrease from the first to the last parity class. All milk quality traits, excluding fat, were affected by the stage of lactation; RCT and k20 decreased rapidly and a30 was higher from the first to the last part of lactation. Alpine breeds showed the highest dMY and dFPY but Mediterranean the best percentage of protein, fat, and lactose and a shorter k20 and a greater a30. Among the Mediterranean goats, Murciano-Granadina goats had the highest milk yield, fat, and protein contents, whereas Maltese, Sarda, and Sarda Primitiva were characterized by much more favorable technological properties in terms of k20, a30, and a45. In conclusion, as both the farm and individual factors highly influenced milk composition and MCP traits, improvements of these traits should be based both on modifying management and individual goat factors. As expected, several differences were attributable to the breed effect, with the best milk production for the Alpines and milk quality and coagulation for the Mediterranean goats.


Assuntos
Cruzamento , Cabras , Lactação/fisiologia , Leite/metabolismo , Animais , Queijo , Meio Ambiente , Feminino , Leite/química , Proteínas do Leite
17.
J Dairy Sci ; 101(11): 9693-9702, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30146298

RESUMO

The present study investigated the effect of different levels of fat, protein, and casein on (1) traditional milk coagulation properties, and (2) curd firming over time parameters of 1,272 goat milk samples. Relationships between fat, protein, and casein and some indicators of udder health status (lactose, pH, somatic cells, bacterial count, and NaCl) were also investigated. Traditional milk coagulation properties and modeled curd-firming parameters were analyzed using a mixed model that considered the effect of days in milk, parity, farm, breed, the pendulum of the instrument, and different levels of fat, protein, and casein. Fat, protein, and casein were also tested with the same model but one at a time. Information provided by this model demonstrated the effect of one component alone, without contemporarily considering that of the others. The results allowed us to clarify the effect of the major milk nutrients on coagulation, curd firming, and syneresis ability of goat milk. In particular, milk rich in fat was associated with better coagulation properties, whereas milk rich in protein was associated with delayed coagulation. The high correlation of fat with protein and casein contents suggests that the effect of fat on the cheese-making process is also attributable to the effects of protein and casein. When only protein or only casein was included in the statistical model, the pattern of coagulation, curd firming, and syneresis was almost indistinguishable. The contemporary inclusion of protein and casein in the statistical model did not generate computing problems and allowed us to better characterize the role of protein and casein. Consequently, given their strong association, we also tested the effect of casein-to-protein ratio (i.e., casein number). Higher values of casein number led to a general improvement in the coagulation ability of milk, suggesting that casein-to-protein ratio, not just protein or casein, should be considered when milk is destined for cheese making. These results are especially useful for dairy farmers who want to increase their profits by improving the technological quality of the milk produced.


Assuntos
Cabras , Leite/química , Animais , Caseínas/análise , Contagem de Células , Queijo , Fenômenos Químicos , Gorduras/análise , Feminino , Concentração de Íons de Hidrogênio , Lactose/análise , Glândulas Mamárias Animais/fisiologia , Leite/citologia , Leite/microbiologia , Proteínas do Leite/análise , Cloreto de Sódio/análise
18.
J Dairy Sci ; 101(9): 7817-7832, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30126595

RESUMO

Little is known about the complex process of cheesemaking at the individual level of dairy goats because of the difficulties of producing a high number of model cheeses. The objectives of this work were (1) to study the cheesemaking ability of goat milk; (2) to investigate the variability of cheesemaking-related traits among different farms; (3) to assess the effects of stage of lactation and parity; and (4) to compare 6 breeds of goat (Saanen and Camosciata delle Alpi for the Alpine type; Murciano-Granadina, Maltese, Sarda and Sarda Primitiva for the Mediterranean type) for their cheesemaking ability. For each goat (n = 560) we studied (1) 8 milk quality traits (fat, protein, total solids, casein, lactose, pH, somatic cell score, and bacterial count); (2) 4 milk nutrient recovery traits (fat, protein, total solids, and energy) in curd; (3) 3 actual cheese yield traits (fresh cheese, cheese solids, and cheese water); (4) 2 theoretical cheese yield values (fresh cheese and cheese solids) and the related cheesemaking efficiencies; and (5) daily milk yield and 3 daily cheese yield traits (fresh cheese, cheese solids, and water retained in the curd). With respect to individual animal factors, farm was not particularly important for recovery traits or actual and theoretical cheese yield and estimates of efficiency, whereas it highly influenced daily productions. Parity of goats influenced daily cheese production, whereas DIM slightly affected recovery as well as percent and daily cheese yield traits. Breed was the most important source of variation for almost all cheesemaking traits. Compared with those of Alpine type, the 4 Mediterranean breeds had, on average, lower daily milk and cheese productions, greater actual and theoretical cheese yield, and higher recovery of nutrients in the curd. Among Alpine type, Camosciata delle Alpi was characterized by greater nutrients recovery than Saanen. Within the 4 Mediterranean types, the 3 Italians produced much less milk per day, with much more fat and protein and greater recovery traits than the Murciano-Granadina, resulting in greater actual cheese yield. Within the Italian breeds, milk from Sarda and Sarda Primitiva was characterized by lower daily yields, higher protein and fat content, and greater recoveries of nutrients than Maltese goats. These results confirmed the potential of goat milk for cheese production and could be useful to give new possibilities and direction in breeding programs.


Assuntos
Cruzamento , Queijo , Cabras , Animais , Feminino , Itália , Leite , Proteínas do Leite , Gravidez
19.
J Dairy Sci ; 101(8): 7027-7039, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29729925

RESUMO

Traditional milk coagulation properties are used to predict the suitability of milk for cheese-making. In bovine and ovine species, the introduction of the concept of curd firming over time, continuously recorded by a lactodynamograph during prolonged tests, provides additional information about milk coagulation, curd-firming, and syneresis processes. The aims of present study were (1) to test the adaptability of a 4-parameter curd-firming model in the assessment of goat milk (also comparing published data of other species); (2) to describe variability of coagulation, curd firming, and syneresis processes among individual goat milk samples; (3) to quantify the effects of farm and animal factors (breed, parity, and stage of lactation); and (4) to compare 6 goat breeds for their model parameters. Milk samples from 1,272 goats reared in 35 farms were collected. Goats were of 6 breeds: Saanen and Camosciata delle Alpi for the Alpine type; and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. During a lactodynamographic analysis (60 min), 240 measures of curd firmness (mm) were recorded for each milk sample. The modeling of curd firming allowed us to achieve the rennet coagulation time estimated on the basis of all the data points (min); the curd firming and the curd syneresis instant rate constants; the asymptotical potential value of curd firming; the actual maximum curd firmness; and the time at which the curd firming maximum level is attained. Modeling parameter data were analyzed using a linear mixed model. Comparison with other dairy species showed several differences: goat milk coagulated later than sheep but earlier than bovine, and curd firming and curd syneresis instant rate constants were greater in small ruminants. Modeling parameters of goat milk were mostly affected by the farm effect (37% of the total variance, on average) compared with the results found for bovine and ovine samples, and this was probably attributable to the marked differences among goat farming systems. Small differences were demonstrated between Alpine and Mediterranean breeds, but the time of maximum curd firmness was lower in Murciano-Granadina compared with Maltese, Sarda, and Sarda Primitiva. Sarda and Sarda Primitiva were very similar and exhibited the most favorable coagulation properties of milk. For almost all the model parameters, the direct effect of breed was increased after correction for milk yield and composition. In conclusion, this approach allowed us to fully depict the effects of the different factors on coagulation of goat milk, and clarified the different renneting pattern among goat breeds, and with other species. Results could be used for the valorization of goat dairy products, also when these are linked to particular local breeds, and to stimulate further studies about relationships between coagulation and cheese-making traits.


Assuntos
Cruzamento , Queijo/análise , Cabras , Leite/química , Animais , Laticínios
20.
Front Nutr ; 11: 1327301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379551

RESUMO

The aims of this proof of principle study were to compare two different chemometric approaches using a Bayesian method, Partial Least Square (PLS) and PLS-discriminant analysis (DA), for the prediction of the chemical composition and texture properties of the Grana Padano (GP) and Parmigiano Reggiano (PR) PDO cheeses by using NIR and Raman spectra and quantify their ability to distinguish between the two PDO and among their ripening periods. For each dairy chain consortium, 9 cheese samples from 3 dairy industries were collected for a total of 18 cheese samples. Three seasoning times were chosen for each dairy industry: 12, 20, and 36 months for GP and 12, 24, and 36 months for PR. A portable NIR instrument (spectral range: 950-1,650 nm) was used on 3 selected spots on the paste of each cheese sample, for a total of 54 spectra collected. An Alpha300 R confocal Raman microscope was used to collect 10 individual spectra for each cheese sample in each spot for a total of 540 Raman spectra collected. After the detection of eventual outliers, the spectra were also concatenated together (NIR + Raman). All the cheese samples were assessed in terms of chemical composition and texture properties following the official reference methods. A Bayesian approach and PLS-DA were applied to the NIR, Raman, and fused spectra to predict the PDO type and seasoning time. The PLS-DA reached the best performances, with 100% correctly identified PDO type using Raman only. The fusion of the data improved the results in 60% of the cases with the Bayesian and of 40% with the PLS-DA approach. A Bayesian approach and a PLS procedure were applied to the NIR, Raman, and fused spectra to predict the chemical composition of the cheese samples and their texture properties. In this case, the best performance in validation was reached with the Bayesian method on Raman spectra for fat (R2VAL = 0.74). The fusion of the data was not always helpful in improving the prediction accuracy. Given the limitations associated with our sample set, future studies will expand the sample size and incorporate diverse PDO cheeses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA