Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 107(11): 3383-3388, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37330631

RESUMO

Root-knot nematodes (RKNs) cause significant economic damage to crop plants, spurring demand for safe, affordable, and sustainable nematicides. A previous study by our research team showed that the combination of two nematicidal secondary metabolites (SMs) derived from Photorhabdus bacteria, trans-cinnamic acid (t-CA), and (4E)-5-phenylpent-4-enoic acid (PPA) have a synergistic effect against RKNs in vitro. In this study, we considered in planta assays to assess the effects of this SM mixture on the virulence and reproductive fitness of the RKN Meloidogyne incognita in a cowpea. Factorial combinations of five t-CA + PPA concentrations (0, 9.0, 22.9, 57.8, and 91.0 µg/ml) and two nematode inoculation conditions (presence or absence) were evaluated in 6-week growth chamber experiments. Results from this study showed that a single root application of the t-CA + PPA mixture significantly reduced the penetration of M. incognita infective juveniles (J2s) into the cowpea roots. The potential toxicity of t-CA + PPA on RKN-susceptible cowpea seedlings was also investigated. The effect of t-CA + PPA × nematode inoculation interactions and the t-CA + PPA mixture did not show significant phytotoxic effects, nor did it adversely affect plant growth parameters or alter leaf chlorophyll content. Total leaf chlorophyll and chlorophyll b content were significantly reduced (by 15 and 22%, respectively) only by the nematode inoculum and not by any of the SM treatments. Our results suggest that a single root application of a mixture of t-CA and PPA reduces M. incognita J2's ability to infect the roots without impairing plant growth or chlorophyll content.


Assuntos
Photorhabdus , Tylenchoidea , Vigna , Animais , Antinematódeos/farmacologia , Clorofila
2.
Microbiology (Reading) ; 166(11): 1074-1087, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064635

RESUMO

Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.


Assuntos
Bacteriocinas/metabolismo , Interações Microbianas , Xenorhabdus/fisiologia , Animais , Antibacterianos/metabolismo , Antibiose , Bacteriocinas/genética , Bacteriófago P2/genética , Manduca/microbiologia , Mutação , Nematoides/microbiologia , Prófagos/genética , Xenorhabdus/genética , Xenorhabdus/metabolismo
3.
J Exp Biol ; 222(Pt 18)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31511342

RESUMO

In this study, we assessed the effect of symbiotic (cognate and non-cognate) and non-symbiotic bacteria on ascaroside production of first-generation adults in two Steinernema spp.: S. carpocapsae All strain and S. feltiae SN strain. Each nematode species was reared under three bacterial scenarios: (1) cognate symbiotic, (2) non-cognate symbiotic strain and (3) non-cognate symbiotic species. Our results showed S. carpocapsae produced four quantifiable ascaroside molecules: asc-C5, asc-C6, asc-C7 and asc-C11, whereas in S. feltiae only three molecules were detected: asc-C5, asc-C7 and asc-C11. Bacterial conditions did not significantly affect the quantity of the secreted ascarosides in first-generation adults of S. carpocapsae However, in S. feltiae, Xenorhabdus nematophila All strain influenced the production of two ascaroside molecules: asc-C5 and asc-C11.


Assuntos
Feromônios/metabolismo , Rabditídios/metabolismo , Rabditídios/microbiologia , Xenorhabdus , Animais , Bactérias , Fenômenos Fisiológicos Bacterianos , Glicolipídeos/metabolismo , Simbiose
4.
J Invertebr Pathol ; 167: 107251, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31560882

RESUMO

Steinernema nematodes and their Xenorhabdus symbionts are a malleable model system to study mutualistic relations. One of the advantages they possess is their ability to be disassociated under in vitro rearing conditions. Various in vitro methods have been developed to produce symbiont colonized and aposymbiotic (symbiont-free) nematodes. Until now, there has been no investigation on how in vitro rearing conditions may have an impact on the storage ability and the protein content of the infective juvenile at different storage temperatures. Thus, in this study, we investigated how infective juvenile longevity and protein content are impacted when the nematodes were reared with two in vitro methods (lipid and liver kidney agar) considering colonized and uncolonized nematodes, and under two different temperatures: 15 °C and 20 °C (mild stress). Infective juveniles reared in vitro (with or without their symbionts) had lower 8-week survival rates. No in vitro reared, colonized IJs survived to the desired 16-week time point. Survival of infective juveniles stored under mild stress temperature (20 °C) was lower than that observed at 15 °C. However, when comparing the interaction between rearing condition and storage temperature, there were not significant differences. With respect to protein content, in vivo, colonized infective juveniles maintained a static protein content over time, suggesting symbiont colonization may influence protein metabolism and/or turnover in infective juveniles.


Assuntos
Rabditídios/crescimento & desenvolvimento , Animais , Técnicas In Vitro/métodos , Longevidade , Mariposas/parasitologia , Parasitologia/métodos , Proteínas/análise , Rabditídios/microbiologia , Rabditídios/patogenicidade , Análise de Sobrevida , Simbiose/fisiologia , Temperatura , Xenorhabdus/crescimento & desenvolvimento
5.
J Invertebr Pathol ; 165: 22-45, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30940472

RESUMO

Since the 1980s, research into entomopathogenic nematodes (EPNs) in Latin America has produced many remarkable discoveries. In fact, 16 out of the 117 recognized species of EPNs have been recovered and described in the subcontinent, with many more endemic species and/or strains remaining to be discovered and identified. In addition, from an applied perspective, numerous technological innovations have been accomplished in relation to their implementation in biocontrol. EPNs have been evaluated against over 170 species of agricultural and urban insects, mites, and plant-parasitic nematodes under laboratory and field conditions. While much success has been recorded, many accomplishments remain obscure, due to their publication in non-English journals, thesis dissertations, conference proceedings, and other non-readily available sources. The present review provides a brief history of EPNs in Latin America, including current findings and future perspectives.


Assuntos
Agentes de Controle Biológico , Controle de Insetos , Controle Biológico de Vetores , Rabditídios , Agricultura/tendências , Animais , Insetos/parasitologia , Larva/parasitologia , América Latina , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Rabditídios/classificação , Rabditídios/crescimento & desenvolvimento , Rabditídios/isolamento & purificação , Rabditídios/patogenicidade
6.
J Invertebr Pathol ; 153: 65-74, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458072

RESUMO

Steinernema nematodes and their Xenorhabdus partners form an obligate mutualistic association. This partnership is insecticidal to a wide range of insects. Steinernema rely on their Xenorhabdus partner to produce toxins inside the insect cadaver to liberate nutrients from the insect, as well as antimicrobials to sterilize the cadaver, thus creating a suitable environment for reproduction. In return, Steinernema vector their Xenorhabdus between insect hosts. Disruption of this partnership may affect the success of both partners. For instance, when Steinernema associates with non-cognate symbionts, their virulence and reproductive fitness are affected. In this study, we examined the effect of symbiotic (cognate and non-cognate) and non-symbiotic bacteria on maturation time, gonad postembryonic development, and sex ratio of first-generation Steinernema adults. Two Steinernema spp. were considered: S. feltiae SN and S. carpocapsae All. In vitro assays were carried out by pairing each nematode sp. with symbiotic (cognate and non-cognate) Xenorhabdus, and with non-symbiotic bacteria (Serratia proteamaculans). Additionally, for comparative purposes, we also considered adult nematodes reared in vivo in Galleria mellonella larvae to assess nematode development under natural conditions. Results from this study showed non-symbiotic Serratia proteamaculans did not support adult development of S. feltiae but it allowed development of S. carpocapsae adults. Sex ratio decreased from 2:1 to 1:1 (female: male) when S. carpocapsae adults were reared with the non-symbiotic S. proteamaculans. Cognate or non-cognate Xenorhabdus spp. and/or strains did not change the sex ratio of any of either Steinernema spp. tested. Morphometric analysis also revealed that bacterial conditions influenced adult size and gonad postembryonic development in both Steinernema species. Body size (length and width), and gonad length in both S. feltiae males and females, were significantly reduced when reared with a non-cognate Xenorhabdus species. In S. carpocapsae, males exhibited an enhanced body size (length and width) and gonad length when reared with a non-cognate X. nematophila strain. S. carpocapsae females also exhibited an enhanced gonad length when reared with a non-cognate X. nematophila strain. S. carpocapsae males and females were underdeveloped when reared with the non-symbiotic S. proteamaculans, and exhibited reduced body sizes and gonad lengths. We conclude that development of first-generation adults of both Steinernema spp. tested, in particular time to adult maturation as well as body and gonad size were directly influenced by the bacterial symbionts they were cultured with. However, response to the culture conditions was species specific.


Assuntos
Nematoides/microbiologia , Xenorhabdus , Animais , Feminino , Gammaproteobacteria , Masculino , Simbiose
7.
BMC Evol Biol ; 17(1): 100, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412935

RESUMO

BACKGROUND: Steinernematid nematodes form obligate symbioses with bacteria from the genus Xenorhabdus. Together Steinernema nematodes and their bacterial symbionts successfully infect, kill, utilize, and exit their insect hosts. During this process the nematodes and bacteria disassociate requiring them to re-associate before emerging from the host. This interaction can be complicated when two different nematodes co-infect an insect host. RESULTS: Non-cognate nematode-bacteria pairings result in reductions for multiple measures of success, including total progeny production and virulence. Additionally, nematode infective juveniles carry fewer bacterial cells when colonized by a non-cognate symbiont. Finally, we show that Steinernema nematodes can distinguish heterospecific and some conspecific non-cognate symbionts in behavioral choice assays. CONCLUSIONS: Steinernema-Xenorhabdus symbioses are tightly governed by partner recognition and fidelity. Association with non-cognates resulted in decreased fitness, virulence, and bacterial carriage of the nematode-bacterial pairings. Entomopathogenic nematodes and their bacterial symbionts are a useful, tractable, and reliable model for testing hypotheses regarding the evolution, maintenance, persistence, and fate of mutualisms.


Assuntos
Evolução Biológica , Aptidão Genética , Rabditídios/fisiologia , Simbiose , Xenorhabdus/fisiologia , Animais , Insetos/parasitologia , Filogenia , Rabditídios/classificação , Rabditídios/genética , Rabditídios/patogenicidade , Virulência , Xenorhabdus/classificação , Xenorhabdus/genética
8.
J Nematol ; 49(4): 373-383, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29353924

RESUMO

Gram-negative Photorhabdus bacteria have a dual lifestyle: they are mutualists of Heterorhabditis nematodes and are pathogens of insects. Together, this nematode-bacterium partnership has been used to successfully control a wide range of agricultural insect pests. Photorhabdus produce a diverse array of small molecules that play key biological roles in regulating their dual roles. In particular, several secondary metabolites (SM) produced by this bacterium are known to play a critical role in the maintenance of a monoxenic infection in the insect host and are also known to prevent contamination of the cadaver from soil microbes and/or predation by arthropods. A few of the SM this bacteria produce have been isolated and identified, and their biological activities have also been tested in laboratory assays. Over the past two decades, analyses of the genomes of several Photorhabdus spp. have revealed the presence of SM numerous gene clusters that comprise more than 6% of these bacteria genomes. Furthermore, genome mining and characterization of biosynthetic pathways, have uncovered the richness of these compounds, which are predicted to vary across different Photorhabdus spp. and strains. Although progress has been made in the identification and function of SM genes and gene clusters, the targeted testing for the bioactivity of molecules has been scarce or mostly focused on medical applications. In this review, we summarize the current knowledge of Photorhabdus SM, emphasizing on their activity against plant pathogens and parasites. We further discuss their potential in the management of agricultural pests and the steps that need to be taken for the implementation of Photorhabdus SM in pest management.

9.
J Invertebr Pathol ; 141: 45-52, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702563

RESUMO

Crude extracts of in vitro and in vivo cultures of two strains of Photorhabdus l. sonorensis (Enterobacteriaceae) were analyzed by TLC, HPLC-UV and LC-MS. Nine unique compounds with mass/charge ratios (m/z) ranging from 331.3 to 713.5 were found in MS analyses. Bioactivity of extracts was assessed on a selection of plant pathogens/pests and non-target species. Caborca strain extracts showed the highest activity against Helicoverpa zea (Lepidoptera: Noctuidae) neonates at all concentrations tested. Mortality ranged from 11% (at 10µg/ml) to 37% (at 40µg/ml). Strain CH35 extracts showed the highest nematicidal activity on Meloidogyne incognita (Tylenchida: Meloidogynidae) at 40µg/ml. Low to no nematicidal activity was observed against the non-target species Steinernema carpocapsae (Rhabditida: Steinernematidae) and Caenorhabditis elegans (Rhabditida: Rhabditidae). Caborca extracts exhibited a strong antibiotic effect on Pseudomonas syringae (Pseudomonadales: Pseudomonadacedae) at 40µg/ml, while both Caborca and CH35 extracts inhibited the growth of Bacillus subitillis (Bacillales: Bacillaceae) at 40µg/ml. All extracts strongly inhibited the growth of the fungus Fusarium oxysporum (Hypocreales: Nectriceae) but not that of Alternaria alternata (Pleosporales: Pleosporaceae). Contrastingly, a moderate to high inhibitory effect was denoted on the non-target biocontrol fungus Beauveria bassiana (Hypocreales: Clavivipitaceae).


Assuntos
Bioprospecção/métodos , Misturas Complexas/farmacologia , Controle Biológico de Vetores/métodos , Photorhabdus/química , Photorhabdus/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cromatografia em Camada Fina , Espectrometria de Massas
10.
J Invertebr Pathol ; 124: 15-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315609

RESUMO

Xenorhabdus bacteria (γ-proteobacteria: Enterobacteriaceae) have dual lifestyles. They have a mutualistic relationship with Steinernema nematodes (Nematoda: Steinernematidae) and are pathogenic to a wide range of insects. Each Steinernema nematode associates with a specific Xenorhabdus species. However, a Xenorhabdus species can have multiple nematode hosts. For example, Xenorhabdus bovienii (Xb) colonizes at least nine Steinernema species from two different phylogenetic clades. The Steinernema-Xb partnership has been found in association with different insect hosts. Biological and molecular data on the Steinernema jollieti-Xb strain SS-2004 pair have recently been described. In particular, the Xb SS-2004 bacteria are virulent alone after direct injection into insect, making this strain a model for studying Xb virulence. In this study, we searched for Xb strains attenuated in virulence. For this purpose, we underwent infection assays with five Steinernema spp.-Xb pairs with two insects, Galleria mellonella (Lepidoptera: Pyralidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). The S. weiseri-Xb CS03 pair showed attenuated virulence and lower fitness in S. littoralis in comparison to the other nematode-bacteria pairs. Furthermore, when injected alone into the hemolymph of G. mellonella or S. littoralis, the Xb CS03 bacterial strain was the only non-virulent strain. By comparison with the virulent Xb SS-2004 strain, Xb CS03 showed an increased sensitivity to the insect antimicrobial peptides, suggesting an attenuated response to the insect humoral immunity. To our current knowledge, Xb CS03 is the first non-virulent Xb strain identified. We propose this strain as a new model for studying the Xenorhabdus virulence.


Assuntos
Mariposas/microbiologia , Nematoides/microbiologia , Xenorhabdus/patogenicidade , Animais , Interações Hospedeiro-Patógeno , Imunidade Humoral , Larva/imunologia , Larva/microbiologia , Mariposas/imunologia , Simbiose , Virulência , Xenorhabdus/fisiologia
11.
Curr Microbiol ; 66(1): 30-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23053483

RESUMO

Photorhabdus are motile Gram-negative bacteria that have a mutualistic association with Heterorhabditis nematodes (Heterorhabditidae). These bacteria possess peculiar biochemical characteristics such as inability to reduce nitrates, and the capacity to ferment only a limited number of carbohydrates. Heterorhabditis nematodes vector the bacteria from one insect host to another and also provide shelter to the bacteria from soil stressors and antagonists. Once inside the insect host, the bacterial symbionts are released and produce toxins and secondary metabolites and broad-spectrum antibiotics, which kill the host by septicemia within 48 h. At present, three Photorhabdus spp. have been identified: P. luminescens, P. temperata, and P. asymbiotica, and many subspecies have also been described. Characterization of new species and subspecies has been based on sequence data, mostly of the 16S rDNA, and also of a selection of protein coding genes. In addition to this, phenotypic traits including temperature growth, colony morphology, color, light production, carbohydrate response, and assimilation, among others, have been considered. In this study, we characterize the bacterial symbiont of Heterorbabditis sonorensis, a recently discovered entomopathogenic nematode species form the Sonoran desert in Arizona, USA. A selection of classic biochemical and molecular methods including sequence data of six genes: 16s rDNA, and four protein coding genes: gyrB, recA, gltX, and dnaN were considered. Evolutionary relationships of this new Photorhabdus subsp. were inferred considering maximum parsimony and Bayesian analyses.


Assuntos
Photorhabdus/classificação , Photorhabdus/isolamento & purificação , Rhabditoidea/microbiologia , Animais , Arizona , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Photorhabdus/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Environ Microbiol ; 14(4): 924-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22151385

RESUMO

Xenorhabdus bovienii (SS-2004) bacteria reside in the intestine of the infective-juvenile (IJ) stage of the entomopathogenic nematode, Steinernema jollieti. The recent sequencing of the X. bovienii genome facilitates its use as a model to understand host - symbiont interactions. To provide a biological foundation for such studies, we characterized X. bovienii in vitro and host interaction phenotypes. Within the nematode host X. bovienii was contained within a membrane bound envelope that also enclosed the nematode-derived intravesicular structure. Steinernema jollieti nematodes cultivated on mixed lawns of X. bovienii expressing green or DsRed fluorescent proteins were predominantly colonized by one or the other strain, suggesting the colonizing population is founded by a few cells. Xenorhabdus bovienii exhibits phenotypic variation between orange-pigmented primary form and cream-pigmented secondary form. Each form can colonize IJ nematodes when cultured in vitro on agar. However, IJs did not develop or emerge from Galleria mellonella insects infected with secondary form. Unlike primary-form infected insects that were soft and flexible, secondary-form infected insects retained a rigid exoskeleton structure. Xenorhabdus bovienii primary and secondary form isolates are virulent towards Manduca sexta and several other insects. However, primary form stocks present attenuated virulence, suggesting that X. bovienii, like Xenorhabdus nematophila may undergo virulence modulation.


Assuntos
Rabditídios/microbiologia , Xenorhabdus/classificação , Adolescente , Animais , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Fenótipo , Rabditídios/fisiologia , Simbiose , Virulência/fisiologia , Xenorhabdus/fisiologia
13.
J Econ Entomol ; 105(3): 994-1005, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22812141

RESUMO

The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.


Assuntos
Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Interações Hospedeiro-Parasita , Inseticidas , Mariposas/parasitologia , Rabditídios/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Simulação por Computador , Resistência a Inseticidas , Modelos Biológicos
14.
J Nematol ; 44(2): 162-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23482825

RESUMO

Entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematidae have a mutualistic-symbiotic association with enteric γ-Proteobacteria (Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus), which confer high virulence against insects. EPNs have been studied intensively because of their role as a natural mortality factor for soil-dwelling arthropods and their potential as biological control agents for belowground insect pests. For many decades, research on EPNs focused on the taxonomy, phylogeny, biogeography, genetics, physiology, biochemistry and ecology, as well as commercial production and application technologies. More recently, EPNs and their bacterial symbionts are being viewed as a model system for advancing research in other disciplines such as soil ecology, symbiosis and evolutionary biology. Integration of existing information, particularly the accumulating information on their biology, into increasingly detailed population models is critical to improving our ability to exploit and manage EPNs as a biological control agent and to understand ecological processes in a changing world. Here, we summarize some recent advances in phylogeny, systematics, biogeography, community ecology and population dynamics models of EPNs, and describe how this research is advancing frontiers in ecology.

15.
PeerJ ; 10: e12956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186508

RESUMO

BACKGROUND: Entomopathogenic Xenorhabdus bacteria are endosymbionts of Steinernema nematodes and together they form an insecticidal mutualistic association that infects a wide range of insect species. Xenorhabdus produce an arsenal of toxins and secondary metabolites that kill the insect host. In addition, they can induce the production of diverse phage particles. A few studies have focused on one integrated phage responsible for producing a phage tail-like bacteriocin, associated with an antimicrobial activity against other Xenorhabdus species. However, very little is known about the diversity of prophage regions in Xenorhabdus species. METHODS: In the present study, we identified several prophage regions in the genome of Xenorhabdus nematophila AN6/1. We performed a preliminary study on the relative expression of genes in these prophage regions. We also investigated some genes (not contained in prophage region) known to be involved in SOS bacterial response (recA and lexA) associated with mitomycin C and UV exposure. RESULTS: We described two integrated prophage regions (designated Xnp3 and Xnp4) not previously described in the genome of Xenorhabdus nematophila AN6/1. The Xnp3 prophage region appears very similar to complete Mu-like bacteriophage. These prophages regions are not unique to X. nematophila species, although they appear less conserved among Xenorhabdus species when compared to the previously described p1 prophage region. Our results showed that mitomycin C exposure induced an up-regulation of recA and lexA suggesting activation of SOS response. In addition, mitomycin C and UV exposure seems to lead to up-regulation of genes in three of the four integrated prophages regions.


Assuntos
Bacteriófagos , Xenorhabdus , Animais , Prófagos/genética , Bacteriófagos/genética , Xenorhabdus/genética , Mitomicina/farmacologia , Insetos/genética , Perfilação da Expressão Gênica
16.
Front Physiol ; 13: 821845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283769

RESUMO

Entomopathogenic nematodes of the genus Steinernema have a mutualistic relationship with bacteria of the genus Xenorhabdus and together they form an antagonist partnership against their insect hosts. The nematodes (third-stage infective juveniles, or IJs) protect the bacteria from the external environmental stressors and vector them from one insect host to another. Xenorhabdus produce secondary metabolites and antimicrobial compounds inside the insect that protect the cadaver from soil saprobes and scavengers. The bacteria also become the nematodes' food, allowing them to grow and reproduce. Despite these benefits, it is yet unclear what the potential metabolic costs for Steinernema IJs are relative to the maintenance and vectoring of Xenorhabdus. In this study, we performed a comparative dual RNA-seq analysis of IJs of two nematode-bacteria partnerships: Steinernema carpocapsae-Xenorhabdus nematophila and Steinernema. puntauvense-Xenorhbdus bovienii. For each association, three conditions were studied: (1) IJs reared in the insect (in vivo colonized), (2) colonized IJs reared on liver-kidney agar (in vitro colonized), and (3) IJs depleted by the bacteria reared on liver-kidney agar (in vitro aposymbiotic). Our study revealed the downregulation of numerous genes involved in metabolism pathways, such as carbohydrate, amino acid, and lipid metabolism when IJs were reared in vitro, both colonized and without the symbiont. This downregulation appears to impact the longevity pathway, with the involvement of glycogen and trehalose metabolism, as well as arginine metabolism. Additionally, a differential expression of the venom protein known to be secreted by the nematodes was observed when both Steinernema species were depleted of their symbiotic partners. These results suggest Steinernema IJs may have a mechanism to adapt their virulence in absence of their symbionts.

17.
Microbiol Spectr ; 10(1): e0257721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138171

RESUMO

Entomopathogenic Photorhabdus bacteria (Enterobacteriaceae: Gamma-proteobacteria), the natural symbionts of Heterorhabditis nematodes, are a rich source for the discovery of biologically active secondary metabolites (SMs). This study describes the isolation of three nematicidal SMs from in vitro culture supernatants of the Arizona-native Photorhabdus luminescens sonorensis strain Caborca by bioactivity-guided fractionation. Nuclear magnetic resonance spectroscopy and comparison to authentic synthetic standards identified these bioactive metabolites as trans-cinnamic acid (t-CA), (4E)-5-phenylpent-4-enoic acid (PPA), and indole. PPA and t-CA displayed potent, concentration-dependent nematicidal activities against the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans), two economically and globally important plant parasitic nematodes (PPNs) that are ubiquitous in the United States. Southwest. Indole showed potent, concentration-dependent nematistatic activity by inducing the temporary rigid paralysis of the same targeted nematodes. While paralysis was persistent in the presence of indole, the nematodes recovered upon removal of the compound. All three SMs were found to be selective against the tested PPNs, exerting little effects on non-target species such as the bacteria-feeding nematode Caenorhabditis elegans or the entomopathogenic nematodes Steinernema carpocapsae, Heterorhabditis bacteriophora, and Hymenocallis sonorensis. Moreover, none of these SMs showed cytotoxicity against normal or neoplastic human cells. The combination of t-CA + PPA + indole had a synergistic nematicidal effect on both targeted PPNs. Two-component mixtures prepared from these SMs revealed complex, compound-, and nematode species-dependent interactions. These results justify further investigations into the chemical ecology of Photorhabdus SMs, and recommend t-CA, PPA and indole, alone or in combinations, as lead compounds for the development of selective and environmentally benign nematicides against the tested PPNs. IMPORTANCE Two phenylpropanoid and one alkaloid secondary metabolites were isolated and identified from culture filtrates of Photorhabdus l. sonorensis strain Caborca. The three identified metabolites showed selective nematicidal and/or nematistatic activities against two important plant parasitic nematodes, the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans). The mixture of all three metabolites had a synergistic nematicidal effect on both targeted nematodes, while other combinations showed compound- and nematode-dependent interactions.


Assuntos
Anti-Helmínticos/farmacologia , Photorhabdus/química , Doenças das Plantas/parasitologia , Metabolismo Secundário , Tylenchoidea/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Cinamatos/farmacologia , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Estrutura Molecular , Photorhabdus/metabolismo , Tylenchoidea/crescimento & desenvolvimento
18.
iScience ; 24(6): 102663, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34169239

RESUMO

The necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States, and may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. Paenibacillus and several other bacterial species were found in the digestive tracts of nematodes harvested from collapsed ant colonies. Serratia marcescens, Serratia nematodiphila, and Pseudomonas fluorescens were collected from the hemolymph of nematode-infected wax moth (Galleria mellonella) larvae. Virulence against waxworms varied by the site of origin of the nematodes. In adult nematodes, bacteria were highly concentrated in the digestive tract with none observed on the cuticle. In contrast, juveniles had more on the cuticle than in the digestive tract. Host species was the primary factor affecting bacterial community profiles, but Spiroplasma sp. and Serratia marcescens sequences were shared across ants, nematodes, and nematode-exposed G. mellonella larvae.

19.
J Invertebr Pathol ; 104(2): 67-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20102721

RESUMO

Xenorhabdus spp., are gram-negative bacterial symbionts of entomopathogenic nematodes in the genus Steinernema. A specialized and intimate relationship exists between nematode and bacteria, affecting many of their life history traits, such as nutrition, dispersal, host-finding, foraging and defense from biotic and abiotic factors. Xenorhabdus currently comprises more than 20 species isolated from Steinernema spp. with diverse host range, host foraging behavior, reproductive modes and environmental tolerance. Xenorhabdus phylogenies have historically been based on 16s rDNA sequence analyses, and only recently has data from housekeeping genes been employed. The prevalence of lateral gene transfer among bacteria calls for a wider perspective when considering their phylogeny. With the increasing number of Xenorhabdus species and strains, various perspectives need to be considered for investigating the evolutionary history of these nematode bacterial symbionts, In this study, we reconstruct the evolutionary histories of 30 species of Xenorhabdus considering the traditional 16s rDNA gene region as well as the housekeeping genes recA and serC. Datasets were analyzed individually and then combined, using a variety of phylogenetic criteria.


Assuntos
Evolução Biológica , DNA Bacteriano/análise , DNA Ribossômico/análise , Filogenia , Xenorhabdus/genética , Animais , Proteínas de Bactérias/genética , Evolução Molecular , Especiação Genética , Interações Hospedeiro-Parasita , RNA Ribossômico/análise , Recombinases Rec A/genética , Rabditídios/microbiologia , Rabditídios/parasitologia , Especificidade da Espécie , Simbiose , Transaminases/genética , Xenorhabdus/fisiologia
20.
J Econ Entomol ; 103(5): 1821-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21061986

RESUMO

Evolution of resistance by pests can reduce the efficacy oftransgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt). In conjunction with refuges of non-Bt host plants, fitness costs can delay the evolution of resistance. Furthermore, fitness costs often vary with ecological conditions, suggesting that agricultural landscapes can be manipulated to magnify fitness costs and thereby prolong the efficacy of Bt crops. In the current study, we tested the effects of four species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) on the magnitude and dominance of fitness costs of resistance to Bt toxin CrylAc in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). For more than a decade, field populations of pink bollworm in the United States have remained susceptible to Bt cotton Gossypium hirsutum L. producing CrylAc; however, we used laboratory strains that had a mixture of susceptible and resistant individuals. In laboratory experiments, dominant fitness costs were imposed by the nematode Steinernema riobrave Cabanillas, Poinar, and Raulston but no fitness costs were imposed by Steinernema carpocapsae Weiser, Steinernema sp. (ML18 strain), or Heterorhabditis sonorensis Stock, Rivera-Orduño, and Flores-Lara. In computer simulations, evolution of resistance to Cry1Ac by pink bollworm was substantially delayed by treating some non-Bt cotton refuge fields with nematodes that imposed a dominant fitness cost, similar to the cost observed in laboratory experiments with S. riobrave. Based on the results here and in related studies, we conclude that entomopathogenic nematodes could bolster insect resistance management, but the success of this approach will depend on selecting the appropriate species of nematode and environment, as fitness costs were magnified by only two of five species evaluated and also depended on environmental factors.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Nematoides/efeitos dos fármacos , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/isolamento & purificação , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Endotoxinas/isolamento & purificação , Genótipo , Proteínas Hemolisinas/isolamento & purificação , Nematoides/classificação , Nematoides/genética , Controle Biológico de Vetores/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA