RESUMO
Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO2 electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu2+ state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.
RESUMO
Conversion of CO2 into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the MnâNi pair in MnâNi DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in MnâNi DAC. Consequently, MnâNi DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm-2. Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over MnâNiâNC catalyst.
RESUMO
An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average PdâPd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The PdâPd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.
RESUMO
Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.
RESUMO
Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)âO intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3⢠radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.
RESUMO
The methane-to-methanol (MtM) conversion via the oxygen looping approach using copper-exchanged zeolites has been extensively studied over the last decade. While a lot of research has focussed on maximizing yield and selectivity, little has been directed toward productivity-a metric far more meaningful for evaluating industrial potential. Using copper-exchanged zeolite omega (Cu-omega), a material highly active and selective for the MtM conversion using the isothermal oxygen looping approach, we show that this material exhibits unprecedented potential for industrial valorization. In doing so, we also present a novel methodology combining operando XAS and mass spectrometry for the screening of materials for the MtM conversion in oxygen looping mode.
RESUMO
Liquid metals (LMs) have been used in electrochemistry since the 19th century, but it is only recently that they have emerged as electrocatalysts with unique properties, such as inherent resistance to coke poisoning, which derives from the dynamic nature of their surface. The use of LM nanoparticles (NPs) as electrocatalysts is highly desirable to enhance any surface-related phenomena. However, LM NPs are expected to rapidly coalesce, similarly to liquid drops, which makes their implementation in electrocatalysis hard to envision. Herein, we demonstrate that liquid Ga NPs (18 nm, 26 nm, 39 nm) drive the electrochemical CO2 reduction reaction (CO2RR) while remaining well-separated from each other. CO is generated with a maximum faradaic efficiency of around 30% at -0.7 VRHE, which is similar to that of bulk Ga. The combination of electrochemical, microscopic, and spectroscopic techniques, including operando X-ray absorption, indicates that the native oxide skin of the Ga NPs is still present during CO2RR and provides a barrier to coalescence during operation. This discovery provides an avenue for future development of Ga-based LM NPs as a new class of electrocatalysts.
Assuntos
Nanopartículas Metálicas , Óxidos , Eletroquímica , Nanopartículas Metálicas/química , MetaisRESUMO
Understanding the structure and behavior of intermediates in chemical reactions is the key to developing greater control over the reaction outcome. This principle is particularly important in the synthesis of metal nanocrystals (NCs), where the reduction, nucleation, and growth of the reaction intermediates will determine the final size and shape of the product. The shape of metal NCs plays a major role in determining their catalytic, photochemical, and electronic properties and, thus, the potential applications of the material. In this work, we demonstrate that layered coordination polymers, called lamellae, are reaction intermediates in Cu NC synthesis. Importantly, we discover that the lamella structure can be fine-tuned using organic ligands of different lengths and that these structural changes control the shape of the final NC. Specifically, we show that short-chain phosphonate ligands generate lamellae that are stable enough at the reaction temperature to facilitate the growth of Cu nuclei into anisotropic Cu NCs, being primarily triangular plates. In contrast, lamellae formed from long-chain ligands lose their structure and form spherical Cu NCs. The synthetic approach presented here provides a versatile tool for the future development of metal NCs, including other anisotropic structures.
Assuntos
Nanopartículas Metálicas , Organofosfonatos , Catálise , Cobre/química , Ligantes , Nanopartículas Metálicas/químicaRESUMO
Size, morphology, and surface sites of electrocatalysts have a major impact on their performance. Understanding how, when, and why these parameters change under operating conditions is of importance for designing stable, active, and selective catalysts. Herein, we study the reconstruction of a Cu-based nanocatalysts during the startup phase of the electrochemical CO2 reduction reaction by combining results from electrochemical in situ transmission electron microscopy with operando X-ray absorption spectroscopy. We reveal that dissolution followed by redeposition, rather than coalescence, is the mechanism responsible for the size increase and morphology change of the electrocatalyst. Furthermore, we point out the key role played by the formation of copper oxides in the process. Understanding of the underlying processes opens a pathway to rational design of Cu electro (re)deposited catalysts and to stability improvement for catalysts fabricated by other methods.
RESUMO
Micron/nanosized particles of liquid metals possess intriguing properties and are gaining popularity for applications in various research fields. Nevertheless, the knowledge of their chemistry is still very limited compared to that of other classes of materials. In this work, we explore the reactivity of Ga nanoparticles (NPs) toward a copper molecular precursor to synthesize bimetallic Cu-Ga NPs. Anisotropic Cu-Ga nanodimers, where the two segregated domains of the constituent metals share an interface, form as the reaction product. Through a series of careful experiments, we demonstrate that a galvanic replacement reaction (GRR) between the Ga seeds and a copper-amine complex takes place. We attribute the final morphology of the bimetallic NPs, which is unusual for a GRR, to the presence of the native oxide shell around the Ga NPs and their liquid nature, via a mechanism that resembles the adhesion of bulk Ga drops to solid conductors. On the basis of this new knowledge, we also demonstrate that sequential GRRs to include more metal domains are possible. This study illustrates a new approach to the synthesis of Ga-based metal nanoparticles and provides the basis for its extension to many more systems with increased levels of complexity.
RESUMO
Solid-state reactions between micrometer-size powders are among the oldest, simplest, and still widely used methods for the fabrication of inorganic solids. These reactions are intrinsically slow because, although the precursorsare "well mixed" at the macroscale, they are highly inhomogeneous at the atomic level. Furthermore, their products are bulk powders that are not suitable for device integration. Herein, we substitute micrometer-size particles with nanocrystals. Scaling down the size of the precursors reduces the reaction time and temperature. More importantly, the final products are nanocrystals with controlled size and shape that can be used as active materials in various applications, including electro- and photocatalysis. The assembly of the nanocrystal precursors as ordered close-packed superlattices enables microscopy studies that deepen the understanding of the solid-state reaction mechanism. We learn that having only one of the two nanocrystal precursors dissolving and diffusing toward the other is crucial to obtain a final nanocrystalline product with homogeneous size and shape. The latter are regulated by the nanocrystal precursor that is the most stable at the reaction temperature. Considering the variety of controlled nanocrystals available, our findings open a new avenue for the synthesis of functional and tunable polyelemental nanomaterials.
RESUMO
The implementation of ammonia as a hydrogen vector relies on the development of active catalysts to release hydrogen on-demand at low temperatures. As an alternative to ruthenium-based catalysts, herein we report the high activity of silica aerogel supported cobalt rhenium catalysts. XANES/EXAFS studies undertaken at reaction conditions in the presence of the ammonia feed reveal that the cobalt and rhenium components of the catalyst which had been pre-reduced are initially re-oxidised prior to their subsequent reduction to metallic and bimetallic species before catalytic activity is observed. A synergistic effect is apparent in which this re-reduction step occurs at considerably lower temperatures than for the corresponding monometallic counterpart materials. The rate of hydrogen production via ammonia decomposition was determined to be 0.007 molH2 gcat-1 h-1 at 450 °C. The current study indicates that reduced Co species are crucial for the development of catalytic activity.
RESUMO
Copper(ii) containing materials are widely studied for a very diverse array of applications from biology, through catalysis, to many other materials chemistry based applications. We show that, for grafted copper compounds at the surface of silica, and for the study of the selective conversion of methane to methanol using copper ion-exchanged zeolites, the application of focused X-ray beams for spectroscopic investigations is subject to significant challenges. We demonstrate how unwanted effects due to the X-rays manifest, which can prevent the study of certain types of reactive systems, and/or lead to the derivation of results that are not at all representative of the behavior of the materials in question. With reference to identical studies conducted at a beamline that does not focus its X-rays, we then delineate how the total photon throughput and the brilliance of the applied X-rays affect the apparent behavior of copper in zeolites during the stepwise, high temperature and aerobic activation approach to the selective conversion of methane to methanol. We show that the use of increasingly brilliant X-ray sources for X-ray spectroscopy can bring with it significant caveats to obtaining valid and quantitative structure-reactivity relationships (QSARS) and kinetics for this class of material. Lastly, through a systematic study of these effects, we suggest ways to ensure that valuable allocations of X-ray beam time result in measurements that reflect the real nature of the chemistry under study and not that due to other, extraneous, factors.
RESUMO
The classical nucleation theory (CNT) is the most common theoretical framework used to explain particle formation. However, nucleation is a complex process with reaction pathways which are often not covered by the CNT. Herein, we study the formation mechanism of copper nanospheres using inâ situ X-ray absorption and scattering measurements. We reveal that their nucleation involves coordination polymer lamellae as pre-nucleation structures occupying a local minimum in the reaction energy landscape. Having learned this, we achieved a superior monodispersity for Cu nanospheres of different sizes. This report exemplifies the importance of developing a more realistic picture of the mechanism involved in the formation of inorganic nanoparticles to develop a rational approach to their synthesis.
RESUMO
We report an operando examination of a model nanocrystalline In2O3 catalyst for methanol synthesis via CO2 hydrogenation (300 °C, 20 bar) by combining X-ray absorption spectroscopy (XAS), X-ray powder diffraction (XRD), and in situ transmission electron microscopy (TEM). Three distinct catalytic regimes are identified during CO2 hydrogenation: activation, stable performance, and deactivation. The structural evolution of In2O3 nanoparticles (NPs) with time on stream (TOS) followed by XANES-EXAFS-XRD associates the activation stage with a minor decrease of the In-O coordination number and a partial reduction of In2O3 due to the formation of oxygen vacancy sites (i.e., In2O3-x). As the reaction proceeds, a reductive amorphization of In2O3 NPs takes place, characterized by decreasing In-O and In-In coordination numbers and intensities of the In2O3 Bragg peaks. A multivariate analysis of the XANES data confirms the formation of In2O3-x and, with TOS, metallic In. Notably, the appearance of molten In0 coincides with the onset of catalyst deactivation. This phase transition is also visualized by in situ TEM, acquired under reactive conditions at 800 mbar pressure. In situ TEM revealed an electron beam assisted transformation of In2O3 nanoparticles into a dynamic structure in which crystalline and amorphous phases coexist and continuously interconvert. The regeneration of the deactivated In0/In2O3-x catalyst by reoxidation was critically assessed revealing that the spent catalyst can be reoxidized only partially in a CO2 atmosphere or air yielding an average crystallite size of the resultant In2O3 that is approximately an order of magnitude larger than the initial one.
RESUMO
This article describes the main strategies to activate and convert carbon dioxide (CO2 ) into valuable chemicals over catalytic surfaces. Coherent elements such as common intermediates are identified in the different strategies and concisely discussed based on the reactivity of CO2 with the aim to understand the decisive factors for selective and efficient CO2 conversion.
RESUMO
This study pioneers the use of continuous flow methods to modify the nanoporous metal-organic framework Fe-BTC (MIL-100(Fe)) with redox-active poly-p-phenylenediamine (PpPDA). The Fe-BTC/PpPDA composite, known for its gold extraction capabilities, was synthesized in continuous flow on a 250 g scale. Fe-BTC/PpPDA was then tested in eight industrial leachates (e.g., cyanide, thiourea, aqua regia) exhibiting varying effectiveness, pH, and gold speciation, which led to significant differences in the composite's performance for gold extraction. The composite performed best in solutions containing [AuCl4]- species. Structured into spherical beads using a novel continuous flow microdroplet technique, these adsorbents were tested for gold recovery from real e-waste solutions in a breakthrough epemriment. They achieved a capacity of ~600 mg of gold per gram before breakthrough and ~900 mg per gram at a 60% recovery rate. Selectivity ratios for Au/Ni, Au/Co, and Au/Fe were 972, 262, and 193, respectively. In situ X-ray absorption near edge spectroscopy (XANES) provided evidence of the reduction of Au³âº to Au°, facilitated by the redox-active oligomers. Outperforming several commercial resins, Fe-BTC/PpPDA shows great promise for scalable, selective metal recovery from waste streams. This study highlights the potential of MOF/polymer composites and continuous flow methods for large-scale production.
RESUMO
In the last few decades, massive effort has been expended in heterogeneous catalysis to develop new materials presenting high conversion, selectivity, and stability even under high-temperature and high-pressure conditions. In this context, CO2 hydrogenation is an interesting reaction where the catalyst local structure is strongly related to the development of an active and stable material under hydrothermal conditions at T/P > 300 °C/30 bar. In order to clarify the relationship between catalyst local ordering and its activity/stability, we herein report a combined laboratory and synchrotron investigation of aliovalent element (Ce/Zn/Ga)-containing ZrO2 matrixes. The results reveal the influence of similar average structures with different short-range orderings on the catalyst properties. Moreover, a further step toward the comprehension of the oxygen vacancy formation mechanism in Ce- and Ga-ZrO2 catalysts is reported. Finally, the reported results illustrate a robust method to guide local structure determination and ultimately help to avoid overuse of the "solid solution" definition.
RESUMO
Exploration of efficient molecular water oxidation catalysts for long-term application remains a key challenge for the conversion of renewable energy sources into fuels. Cuboidal {Co4O4} complexes keep attracting interest as molecular water oxidation catalysts as they combine features of both heterogeneous and homogeneous catalysis with bio-inspired motifs. However, the application of many cluster-based catalysts for the oxygen evolution reaction still requires new stabilization strategies. Drawing inspiration from the stabilizing effects of natural polymers, we introduce a conductive polymer-hybrid approach to covalently immobilize {Co4O4} cubane oxo clusters as oxygen evolution catalysts. Polypyrrole is applied as an efficient p-type conducting polymer that promotes hole transfer during the oxygen evolution reaction, resulting in higher turnover frequency compared to the pristine {Co4O4} oxo cluster and heterogeneous Co-oxide benchmarks. The asymmetric coordination of {Co4O4} not only mitigates catalyst decomposition pathways, but also increases the catalytic efficiency by exposing a directed cofacial dihydroxide motif during catalysis.
RESUMO
Growing polymers inside porous metal-organic frameworks (MOFs) can allow incoming guests to access the backbone of otherwise non-porous polymers, boosting the number and/or strength of available adsorption sites inside the porous support. In the present work, we have devised a novel post-synthetic modification (PSM) strategy that allows one to graft metal-chelating functionality onto a polymer backbone while inside MOF pores, enhancing the material's ability to recover Pt(iv) from complex liquids. For this, polydopamine (PDA) was first grown inside of a MOF, known as Fe-BTC (or MIL-100 Fe). Next, a small thiol-containing molecule, 2,3-dimercapto-1-propanol (DIP), was grafted to the PDA via a Michael addition. After the modification of the PDA, the Pt adsorption capacity and selectivity were greatly enhanced, particularly in the low concentration regime, due to the high affinity of the thiols towards Pt. Moreover, the modified composite was found to be highly selective for precious metals (Pt, Pd, and Au) over common base metals found in electronic waste (i.e., Pb, Cu, Ni, and Zn). X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption spectroscopy (XAS) provided insight into the Pt adsorption/reduction process. Last, the PSM was extended to various thiols to demonstrate the versatility of the chemistry. It is hoped that this work will open pathways for the future design of novel adsorbents that are fine-tuned for the rapid, selective retrieval of high-value and/or critical metals from complex liquids.