Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Sci Monit ; 30: e944050, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971968

RESUMO

BACKGROUND Measurement of bite force plays a crucial role in assessment of the masticatory system. With a growing interest in detecting occlusal irregularities, bite force sensors have garnered attention in the biomedical field. This study aimed to introduce a hydrogel bite force sensor, based on hydroxyethyl-cellulose-fructose-water (HEC-F-water), for premolar and molar teeth, and to evaluate it using optical profilometry, infrared spectroscopy (FTIR), and Instron Tension testing system, with 2.5 cm (1 inch) margins at top, bottom, right, and left. MATERIAL AND METHODS We fabricated 20 HEC-F-water hydrogel samples sized with surface of 1×1 cm, with 2 different widths - 1 mm and 5 mm. The samples were characterized using optical profilometry and FTIR and their electrical characteristics were determined using an impedance analyzer. Aluminum (Al) electrodes, fabricated using Cutting Plotter, were used to form a HEC-F-water-based transducer, which was used for bite force sensing. The Instron tensile testing system was employed, utilizing 3D printed models of the upper and lower jaw, to simulate biting. Forces in the range between 40 N and 540 N were exerted upon the transducer, and the output change in the electrical signal was measured. RESULTS The study determined the transfer function between bite force and capacitance. The fabricated sensor exhibited a sensitivity of 3.98 pF/N, an input range of 500 N, output range of 2 nF, and accuracy of 95.9%. CONCLUSIONS This study introduces an edible bite force sensor employing an edible hydrogel as a dielectric, presenting a novel avenue in the development of edible sensorics in dentistry.


Assuntos
Força de Mordida , Humanos , Hidrogéis/química , Dente Molar , Frutose , Mastigação/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Celulose/química , Água , Dente Pré-Molar
2.
Med Sci Monit ; 30: e943321, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863180

RESUMO

BACKGROUND This study explored the integration of conductive threads into a microfluidic compact disc (CD), developed using the xurographic method, for a potential sweat biosensing platform. MATERIAL AND METHODS The microfluidic CD platform, fabricated using the xurographic method with PVC films, included venting channels and conductive threads linked to copper electrodes. With distinct microfluidic sets for load and metering, flow control, and measurement, the CD's operation involved spinning for sequential liquid movement. Impedance analysis using HIOKI IM3590 was conducted for saline and artificial sweat solutions on 4 identical CDs, ensuring reliable conductivity and measurements over a 1 kHz to 200 kHz frequency range. RESULTS Significant differences in |Z| values were observed between saline and artificial sweat treatments. 27.5 µL of saline differed significantly from 27.5 µL of artificial sweat, 72.5 µL of saline from 72.5 µL of artificial sweat, and 192.5 µL of saline from 192.5 µL of sweat. Significant disparities in |Z| values were observed between dry fibers and Groups 2, 3, and 4 (varying saline amounts). No significant differences emerged between dry fibers and Groups 6, 7, and 8 (distinct artificial sweat amounts). These findings underscore variations in fiber characteristics between equivalent exposures, emphasizing the nuanced response of the microfluidic CD platform to different liquid compositions. CONCLUSIONS This study shows the potential of integrating conductive threads in a microfluidic CD platform for sweat sensing. Challenges in volume control and thread coating degradation must be addressed for transformative biosensing devices in personalized healthcare.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Suor , Suor/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Microfluídica/métodos , Microfluídica/instrumentação , Condutividade Elétrica , Eletrodos , Impedância Elétrica
3.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062598

RESUMO

The incidence of diabetes is increasing at an alarming rate, and regular glucose monitoring is critical in order to manage diabetes. Currently, glucose in the body is measured by an invasive method of blood sugar testing. Blood glucose (BG) monitoring devices measure the amount of sugar in a small sample of blood, usually drawn from pricking the fingertip, and placed on a disposable test strip. Therefore, there is a need for non-invasive continuous glucose monitoring, which is possible using a sweat sensor-based approach. As sweat sensors have garnered much interest in recent years, this study attempts to summarize recent developments in non-invasive continuous glucose monitoring using sweat sensors based on different approaches with an emphasis on the devices that can potentially be integrated into a wearable platform. Numerous research entities have been developing wearable sensors for continuous blood glucose monitoring, however, there are no commercially viable, non-invasive glucose monitors on the market at the moment. This review article provides the state-of-the-art in sweat glucose monitoring, particularly keeping in sight the prospect of its commercialization. The challenges relating to sweat collection, sweat sample degradation, person to person sweat amount variation, various detection methods, and their glucose detection sensitivity, and also the commercial viability are thoroughly covered.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Glicemia , Automonitorização da Glicemia , Glucose , Humanos , Suor
4.
Sensors (Basel) ; 22(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408213

RESUMO

Wireless sensor networks (WSNs) have received considerable interest in recent years. These sensor nodes can gather information from the surrounding environment and transmit it to a designated location. Each sensor node in WSN typically has a battery with a limited capacity. Due to their large number and because of various environmental challenges, it is sometimes hard to replace this finite battery. As a result, energy-efficient communication is seen as a critical aspect in extending the lifespan of a sensor node. On the other hand, some applications that require large coverage and generate various sorts of data packets require multi-hop routing and quality of service (QoS) features. Therefore, in order to avoid network failure, these applications need an energy-efficient QoS MAC protocol that can support multiple levels of data packet priority and multi-hop routing features while focusing on energy conservation. An energy-aware QoS MAC protocol based on Prioritized Data and Multi-hop routing (EQPD-MAC) is proposed in this article. The EQPD-MAC protocol offers a simple yet effective cross-layer communication method. It provides timely delivery of multi-priority packets, uses an adaptive active time to limit idle listening, and integrates a robust routing protocol. Finally, the EQPD-MAC protocol's performance was evaluated and compared to three other well-known QoS MAC protocols. The simulation findings show that the proposed protocol significantly decreases sensor node energy consumption by up to 30.3%, per-bit energy consumption by up to 29.6%, sink node energy consumption by up to 27.4% and increases throughput by up to 23.3%.

5.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366073

RESUMO

The rapid growth of the world population has increased the food demand as well as the need for assurance of food quality, safety, and sustainability. However, food security can easily be compromised by not only natural hazards but also changes in food preferences, political conflicts, and food frauds. In order to contribute to building a more sustainable food system-digitally visible and processes measurable-within this review, we summarized currently available evidence for various information and communication technologies (ICTs) that can be utilized to support collaborative actions, prevent fraudulent activities, and remotely perform real-time monitoring, which has become essential, especially during the COVID-19 pandemic. The Internet of Everything, 6G, blockchain, artificial intelligence, and digital twin are gaining significant attention in recent years in anticipation of leveraging the creativity of human experts in collaboration with efficient, intelligent, and accurate machines, but with limited consideration in the food supply chain. Therefore, this paper provided a thorough review of the food system by showing how various ICT tools can help sense and quantify the food system and highlighting the key enhancements that Industry 5.0 technologies can bring. The vulnerability of the food system can be effectively mitigated with the utilization of various ICTs depending on not only the nature and severity of crisis but also the specificity of the food supply chain. There are numerous ways of implementing these technologies, and they are continuously evolving.


Assuntos
Blockchain , COVID-19 , Humanos , Pandemias/prevenção & controle , Inteligência Artificial , Segurança Alimentar
6.
Sci Technol Adv Mater ; 22(1): 772-793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552390

RESUMO

Wearable power supply devices and systems are important necessities for the emerging textile electronic applications. Current energy supply devices usually need more space than the device they power, and are often based on rigid and bulky materials, making them difficult to wear. Fabric-based batteries without any rigid electrical components are therefore ideal candidates to solve the problem of powering these devices. Printing technologies have greater potential in manufacturing lightweight and low-cost batteries with high areal capacity and generating high voltages which are crucial for electronic textile (e-textile) applications. In this review, we present various printing techniques, and battery chemistries applied for smart fabrics, and give a comparison between them in terms of their potential to power the next generation of electronic textiles. Series combinations of many of these printed and distributed battery cells, using electrically conducting threads, have demonstrated their ability to power different electronic devices with a specific voltage and current requirements. Therefore, the present review summarizes the chemistries and material components of several flexible and textile-based batteries, and provides an outlook for the future development of fabric-based printed batteries for wearable and electronic textile applications with enhanced level of DC voltage and current for long periods of time.

7.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883867

RESUMO

Lately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.


Assuntos
Transdutores , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Análise de Falha de Equipamento , Óptica e Fotônica
8.
Sensors (Basel) ; 21(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073687

RESUMO

Wireless sensors networks (WSNs) are characterized by flexibility and scalability in any environment. These networks are increasingly used in agricultural and industrial environments and have a dual role in data collection from sensors and transmission to a monitoring system, as well as enabling the management of the monitored environment. Environment management depends on trust in the data collected from the surrounding environment, including the time of data creation. This paper proposes a trust model for monitoring humidity and moisture in agricultural and industrial environments. The proposed model uses a digital signature and public key infrastructure (PKI) to establish trust in the data source, i.e., the trust in the sensor. Trust in data generation is essential for real-time environmental monitoring and subsequent analyzes, thus timestamp technology is implemented here to further ensure that gathered data are not created or changed after the assigned time. Model validation is performed using the Castalia network simulator by testing energy consumption at the receiver and sender nodes and the delay incurred by creating or validating a trust token. In addition, validation is also performed using the Ascertia TSA Crusher application for the time consumed to obtain a timestamp from the free TSA. The results show that by applying different digital signs and timestamps, the trust entity of the WSN improved significantly with an increase in power consumption of the sender node by up to 9.3% and receiver node by up to 126.3% for a higher number of nodes, along with a packet delay of up to 15.6% and an average total time consumed up to 1.186 s to obtain the timestamp from the best chosen TSA, which was as expected.

9.
Sensors (Basel) ; 20(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171890

RESUMO

This study aims to discuss the synthesis and fabrication of SnO2-In2O3-based thick-films and their biosensing applications. The structural characterization of SnO2-In2O3 nanocomposites was performed using X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Furthermore, the screen-printing technology was used in the fabrication of conductive electrodes to form an interdigitated capacitive structure, and the sensor layer based on the mixture of SnO2 and In2O3. Moreover, the sensing performance of the developed structure was tested using Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria. In addition, the validation of sensing characteristics was performed by electrochemical impedance spectroscopic and self-resonant frequency analysis. Finally, the sensing properties were analyzed for two consecutive days, and changes in both P. aeruginosa and S. aureus pathogens growing media were also studied.


Assuntos
Nanocompostos , Staphylococcus aureus , Técnicas Biossensoriais , Eletrodos , Difração de Raios X
10.
Saudi Pharm J ; 28(2): 165-171, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042255

RESUMO

Bile acids (BAs) are amphiphilic compounds and of recently have demonstrated wide range of formulation stabilizing effects. A recent study showed that primary un-metabolised bile acids (PUBAs) have ß-cell protective effects, and synergistic antidiabetic effects when combined with antioxidant and anti-inflammatory drugs, such as probucol (PB). Thus, this study aimed to design and test microcapsules containing a PUBA incorporated with PB and an alginate-Eudragit matrix. Six types of microcapsules were developed without (control) or with (test) PUBA, and tested for internal and external features and ß-cell protective effects. The incorporation of PB-alginate-Eudragit with PUBA produced stable microcapsules but did not exert consistent positive effects on cell viability in the hyperglycaemic state, which suggests that PUBA in alginate-Eudragit matrices did not exhibit synergistic effects with PB nor exerted antidiabetic effects.

11.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974880

RESUMO

Microfluidics, one of the most attractive and fastest developed areas of modern science and technology, has found a number of applications in medicine, biology and chemistry. To address advanced designing challenges of the microfluidic devices, the research is mainly focused on development of efficient, low-cost and rapid fabrication technology with the wide range of applications. For the first time, this paper presents fabrication of microfluidic chips using hybrid fabrication technology-a grouping of the PVC (polyvinyl chloride) foils and the LTCC (Low Temperature Co-fired Ceramics) Ceram Tape using a combination of a cost-effective xurography technique and a laser micromachining process. Optical and dielectric properties were determined for the fabricated microfluidic chips. A mechanical characterization of the Ceram Tape, as a middle layer in its non-baked condition, has been performed and Young's modulus and hardness were determined. The obtained results confirm a good potential of the proposed technology for rapid fabrication of low-cost microfluidic chips with high reliability and reproducibility. The conducted microfluidic tests demonstrated that presented microfluidic chips can resist 3000 times higher flow rates than the chips manufactured using standard xurography technique.

12.
Sensors (Basel) ; 19(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781694

RESUMO

In the paper the description of an experiment for a comparative analysis of two different methods for deformation determination, geodetic and 2D deflection sensors based on fiber-optic curvature sensors (FOCSs) is given. The experiment is performed by a using specially designed assembly which makes it possible to apply both methods. For performing geodetic measurements, a geodetic micro-network is established. Measurements by applying a 2D deflection sensor and three total stations are carried out for comparison. The data processing comprises graphical and numerical analysis of the results. Based on the presented results the potential of 2D deflection sensor application in structural health monitoring (SHM) procedures is indicated. The analysis of the measurement results also indicates the importance of integrating various types of sensors for obtaining more accurate and more reliable deformation measurements results.

13.
Pharm Dev Technol ; 24(10): 1272-1277, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31557068

RESUMO

Studies in our laboratory have shown potential applications of the anti-atherosclerotic drug probucol (PB) in diabetes due to anti-inflammatory and ß-cell protective effects. The anti-inflammatory effects were optimized by incorporation of the anti-inflammatory bile acid, ursodeoxycholic acid (UDCA). This study aimed to test PB absorption, tissue accumulation profiles, effects on inflammation and type 1 diabetes prevention when combined with UDCA. Balb/c mice were divided into three equal groups and gavaged daily PB powder, PB microcapsules or PB-UDCA microcapsules for one week, at a constant dose. Mice were injected with a single dose of intraperitoneal/subcutaneous alloxan to induce type-1 diabetes and once diabetes was confirmed, treatments were continued for 3 days. Mice were euthanized and blood and tissues collected for analysis of PB and cytokine levels. The PB-UDCA group showed the highest PB concentrations in blood, gut, liver, spleen, brain, and white adipose tissues, with no significant increase in pancreas, heart, skeletal muscles, kidneys, urine or feces. Interferon gamma in plasma was significantly reduced by PB-UDCA suggesting potent anti-inflammatory effects. Blood glucose levels remained similar after treatments, while survival was highest among the PB-UDCA group. Our findings suggest that PB-UDCA resulted in best PB blood and tissue absorption and reduced inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Probucol/uso terapêutico , Ácido Ursodesoxicólico/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Combinação de Medicamentos , Composição de Medicamentos , Excipientes/química , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Probucol/administração & dosagem , Probucol/farmacocinética , Distribuição Tecidual , Ácido Ursodesoxicólico/administração & dosagem , Ácido Ursodesoxicólico/farmacocinética
14.
Sensors (Basel) ; 15(5): 11454-64, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25993519

RESUMO

This paper presents a passive LC wireless sensor for measuring temperature. The sensor is designed as a parallel connection of a spiral inductor and an interdigitated capacitor and it was fabricated in a conductive layer using LTCC (Low Temperature Co-fired Ceramic) technology. The inderdigitated capacitor electrodes were coated with a thin film of bismuth doped barium titanate (Ba0.9Bi0.066TiO3), whose permittivity changes with temperature, which directly induces changes in the capacitance of the interdigitated capacitor and consequently changes the resonant frequency of the sensor. The measurements of S-parameter of the sensor were performed using a Vector Network Analyzer (E5071B, Agilent Technologies, Santa Clara, CA, USA), whose port was connected to the antenna coil that was placed around the sensor in order to be able to wirelessly detect temperature, in the temperature range from 25 °C to 165 °C.

15.
Heliyon ; 10(4): e26069, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420460

RESUMO

This work presents a novel approach towards integrating electronic components with textiles, by successfully creating a fully textile-based element that is capable of detecting applied forces by variation in its resistance value. The fabrication of the device consists of a specialized siliconized conductive fabric, which is placed above and below a layer of switch fabric, which acts as a force sensor. In this paper, the effects of three different geometries are observed, as well as the washability of the device, along with tension testing. Μoreover, the device behavior is simulated as well as applied in a real-life scenario. The proposed element demonstrates a good dynamic range, high repeatability and stability, and minimal impact of washing, creating a great candidate for integration in e-textiles.

16.
ACS Omega ; 9(6): 6527-6536, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371763

RESUMO

Tissue engineering is currently one of the fastest-growing areas of engineering, requiring the fabrication of advanced and multifunctional materials that can be used as scaffolds or dressings for tissue regeneration. In this work, we report a bilayer material prepared by electrospinning a hybrid material of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC NFs) (top layer) over a highly interconnected porous 3D gelatin-PVA hydrogel obtained by a freeze-drying process (bottom layer). The techniques were combined to produce an advanced material with synergistic effects on the physical and biological properties of the two materials. The bilayer material was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a water contact measurement system (WCMS). Studies on swelling, degradability, porosity, drug release, cellular and antibacterial activities were performed using standardized procedures and assays. FTIR confirmed cross-linking of both the top and bottom layers, and SEM showed porous structure for the bottom layer, random deposition of NFs on the surface, and aligned NFs in the cross section. The water contact angle (WCA) showed a hydrophilic surface for the bilayer material. Swelling analysis showed high swelling, and degradation analysis showed good stability. The bilayer material released Ag-sulfadiazine in a sustained and controlled manner and showed good antibacterial activities against severe disease-causing gram + ive and -ive (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) bacterial strains. In vitro biological studies were performed on fibroblasts (3T3) and human embryonic kidneys (HEK-293), which showed desirable cell viability, proliferation, and adhesion to the bilayer. Thus, the synergistic effect of NFs and the hydrogel resulted in a potential wound dressing material for wound healing and soft tissue engineering.

17.
ACS Appl Bio Mater ; 7(8): 5082-5106, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39007509

RESUMO

In view of their exceptional approach, excellent inherent biocompatibility and biodegradability properties, and interaction with the local extracellular matrix, protein-based polymers have received attention in bone tissue engineering, which is a multidisciplinary field that repairs and regenerates fractured bones. Bone is a multihierarchical complex structure, and it performs several essential biofunctions, including maintaining mineral balance and structural support and protecting soft organs. Protein-based polymers have gained interest in developing ideal scaffolds as emerging biomaterials for bone fractured healing and regeneration, and it is challenging to design ideal bone substitutes as perfect biomaterials. Several protein-based polymers, including collagen, keratin, gelatin, serum albumin, etc., are potential materials due to their inherent cytocompatibility, controlled biodegradability, high biofunctionalization, and tunable mechanical characteristics. While numerous studies have indicated the encouraging possibilities of proteins in BTE, there are still major challenges concerning their biodegradability, stability in physiological conditions, and continuous release of growth factors and bioactive molecules. Robust scaffolds derived from proteins can be used to replace broken or diseased bone with a biocompatible substitute; proteins, being biopolymers, provide excellent scaffolds for bone tissue engineering. Herein, recent developments in protein polymers for cutting-edge bone tissue engineering are addressed in this review within 3-5 years, with a focus on the significant challenges and future perspectives. The first section discusses the structural fundamentals of bone anatomy and ideal scaffolds, and the second section describes the fabrication techniques of scaffolds. The third section highlights the importance of proteins and their applications in BTE. Hence, the recent development of protein polymers for state-of-the-art bone tissue engineering has been discussed, highlighting the significant challenges and future perspectives.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Proteínas , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Teste de Materiais
18.
Adv Sci (Weinh) ; : e2404658, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285660

RESUMO

Edible electronics is emerging in recent years motivated by a diverse number of healthcare applications, where sensors can be safely ingested without the need for any medical supervision. However, the current lack of stable and well-performing edible semiconductors needs to be addressed to reach technological maturity and allow the surge of a new generation of edible circuits. In the quest for good-performing edible semiconductors, this study has explored the possibility of considering materials that are not regulated for intentional ingestion, yet are daily swallowed with no adverse reactions, such as pigments contained in toothpaste. This work first elaborates on the basis of inadvertent ingestion data to estimate the quantity of daily ingested Copper(II) Phthalocyanine (CuPc), a whitening pigment and well-known organic semiconductor. Subsequently, CuPc is employed in the first demonstration of fully edible electrolyte-gated transistors operating at low voltage (<1 V), displaying good reproducibility and stable performance for over a year. The results indicate that, with the daily ingested quantity of CuPc from toothpaste, more than 104 edible transistors can be realized, thus paving the way to edible circuits, a critical component of future edible electronic systems.

19.
Int J Biol Macromol ; 254(Pt 3): 127882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951446

RESUMO

Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Hidrogéis/química , Medicina Regenerativa , Matriz Extracelular/química , Sistemas de Liberação de Medicamentos
20.
ACS Omega ; 9(9): 10539-10555, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463280

RESUMO

Covarine, copper phthalocyanine, a novel tooth whitening ingredient, has been incorporated into various toothpaste formulations using diverse technologies such as larger flakes, two-phase pastes, and microbeads. In this study, we investigated the behavior of covarine microbeads (200 µm) in Colgate advanced white toothpaste when mixed with artificial and real saliva. Our analysis utilized a custom-designed microfluidic mixer with 400 µm wide channels arranged in serpentine patterns, featuring a Y-shaped design for saliva and toothpaste flow. The mixer, fabricated using stereolithography 3D printing technology, incorporated a flexible transparent resin (Formlabs' Flexible 80A resin) and PMMA layers. COMSOL simulations were performed by utilizing parameters extracted from toothpaste and saliva datasheets, supplemented by laboratory measurements, to enhance simulation accuracy. Experimental assessments encompassing the behavior of covarine particles were conducted using an optical profilometer. Viscosity tests and electrical impedance spectroscopy employing recently developed all-carbon electrodes were employed to analyze different toothpaste dilutions. The integration of experimental data from microfluidic chips with computational simulations offers thorough insights into the interactions of covarine particles with saliva and the formation of microfilms on enamel surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA