Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 39(10): 1335-1348, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34124808

RESUMO

Thromboembolic stroke remains a major cause of neurological disability and death. Current stroke treatments (aspirin, tissue plasminogen activator) are significantly limited by timing and risks for hemorrhage which have driven researchers to explore other approaches. Stem cell-based therapy appears to be an effective option for ischemic stroke. Besides trans-differentiation into neural cells, stem cells also provide acute protection via paracrine signaling pathways through which releasing neuroprotective factors. We previously reported that intraperitoneal administration of human placenta mesenchymal stem cell (hPMSC) therapy upon reperfusion significantly protected the brain against middle cerebral artery occlusion (MCAO)-induced injury. In the present study, we specifically investigated the role of hPMSC-derived angiotensin converting enzyme-2 (ACE-2) in protection of MCAO-induced brain injury by measurement of brain tissue viability, cerebral blood flow, and neurological score. Here, we report for the first time that hPMSC expressing substantial amount of ACE-2, which mediates hPMSC protection in the MCAO model. Strikingly, we found that the protective effects of hPMSC in MCAO-induced brain injury could be attenuated by pretreatment of hPMSCs with MLN-4760, a specific inhibitor of ACE-2 activity, or by transfection of hPMSCs with ACE-2-shRNA-lentivirus. The hPMSC-derived ACE-2 specific protective mechanism was further demonstrated by administration of PD123319, an Angiotensin type-2 receptor antagonist, or A779, a MasR antagonist. Importantly, our study demonstrated that the protective effects of hPMSC in experimental stroke are ACE-2/MasR dependent and this signaling pathway represents an innovative and highly promising approach for targeted stroke therapy.


Assuntos
Enzima de Conversão de Angiotensina 2 , Lesões Encefálicas , AVC Isquêmico , Células-Tronco Mesenquimais , Proto-Oncogene Mas , Enzima de Conversão de Angiotensina 2/genética , Feminino , Humanos , AVC Isquêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Placenta , Gravidez , Proto-Oncogene Mas/genética , Ativador de Plasminogênio Tecidual/metabolismo
2.
Alzheimers Dement ; 17(8): 1391-1402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33710769

RESUMO

While heart disease remains a common cause of mortality, cerebrovascular disease also increases with age, and has been implicated in Alzheimer's disease and related dementias (ADRD). We have described hydrogen sulfide (H2 S), a signaling molecule important in vascular homeostasis, as a biomarker of cardiovascular disease. We hypothesize that plasma H2 S and its metabolites also relate to vascular and cognitive dysfunction in ADRD. We used analytical biochemical methods to measure plasma H2 S metabolites and MRI to evaluate indicators of microvascular disease in ADRD. Levels of total H2 S and specific metabolites were increased in ADRD versus controls. Cognition and microvascular disease indices were correlated with H2 S levels. Total plasma sulfide was the strongest indicator of ADRD, and partially drove the relationship between cognitive dysfunction and white matter lesion volume, an indicator of microvascular disease. Our findings show that H2 S is dysregulated in dementia, providing a potential biomarker for diagnosis and intervention.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Sulfeto de Hidrogênio , Idoso , Doença de Alzheimer/sangue , Disfunção Cognitiva/diagnóstico , Feminino , Humanos , Sulfeto de Hidrogênio/sangue , Sulfeto de Hidrogênio/farmacologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estados Unidos , Substância Branca
3.
Circulation ; 140(4): 319-335, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31154815

RESUMO

BACKGROUND: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. METHODS: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1-/-) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye-induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. RESULTS: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1-/- mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease αIIbß3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5-13 mice/group or 7-10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (αIIbß3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.


Assuntos
Anexina A1/genética , Plaquetas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais
4.
Cell Mol Life Sci ; 74(12): 2263-2282, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28246700

RESUMO

Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.


Assuntos
Aterosclerose/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Animais , Aterosclerose/patologia , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Humanos , Trombose/metabolismo , Trombose/patologia
5.
Pathophysiology ; 22(1): 31-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25511533

RESUMO

Cytomegalovirus (CMV) infects 60-100% of the population worldwide. CMV has been implicated in many diseases through the induction of inflammation. Inflammatory bowel disease (IBD) affects over 1 million Americans annually. IBD, in particular ulcerative colitis, has been associated with CMV infection. Here we use a murine model to test if both primary and persistent CMV infections exacerbate colitis. C57Bl/6J mice were injected with Mock inoculum or murine CMV (mCMV) 4d (primary infection) or 6wks (persistent infection) before inducing colitis. Colitis was induced by administering 3% DSS (dextran sodium sulfate) in the drinking water for 6 days. Distilled water was given to controls. Disease activity index (DAI), derived from scores for stool consistency, body weight loss, occult blood, and rectal bleeding, was recorded daily. DAI increased early with DSS treatment in Mocks when compared with water-treated controls. This was accelerated by both primary and persistent mCMV and appeared to be primarily due to the earlier appearance of gross bleeding vs. their Mock controls. Mocks reached similar DAI values by day 6. Myeloperoxidase was modestly elevated in the mCMV 4d-DSS over the Mock 4d-DSS, however there was no such synergism in the 6wk groups. Histology was comparable in Mock and mCMV groups. Taken together our findings show that mCMV accelerated the development of acute colitis although a milder model of colitis may be needed to better delineate the impact of the virus on disease progression. Further work focusing on disruption of barrier function and bleeding may help determine the underlying mechanisms.

6.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L435-48, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25085625

RESUMO

Previous observations made by our laboratory indicate that Bruton's tyrosine kinase (Btk) may play an important role in the pathophysiology of local inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). We have shown that there is cross talk between FcγRIIa and TLR4 in alveolar neutrophils from patients with ALI/ARDS and that Btk mediates the molecular cooperation between these two receptors. To study the function of Btk in vivo we have developed a unique two-hit model of ALI: LPS/immune complex (IC)-induced ALI. Furthermore, we conjugated F(ab)2 fragments of anti-neutrophil antibodies (Ly6G1A8) with specific siRNA for Btk to silence Btk specifically in alveolar neutrophils. It should be stressed that we are the first group to perform noninvasive transfections of neutrophils, both in vitro and in vivo. Importantly, our present findings indicate that silencing Btk in alveolar neutrophils has a dramatic protective effect in mice with LPS/IC-induced ALI, and that Btk regulates neutrophil survival and clearance of apoptotic neutrophils in this model. In conclusion, we put forward a hypothesis that Btk-targeted neutrophil specific therapy is a valid goal of research geared toward restoring homeostasis in lungs of patients with ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Complexo Antígeno-Anticorpo/toxicidade , Inativação Gênica , Lipopolissacarídeos/toxicidade , Neutrófilos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Alvéolos Pulmonares/enzimologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Tirosina Quinase da Agamaglobulinemia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/patologia , Proteínas Tirosina Quinases/genética , Alvéolos Pulmonares/patologia , Receptores de IgG/genética , Receptores de IgG/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 307(12): H1745-53, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25326535

RESUMO

Cytomegalovirus (CMV) infects a majority of the population worldwide. It has been implicated in cardiovascular disease, induces microvascular dysfunction, and synergizes with hypercholesterolemia to promote leukocyte and platelet recruitment in venules. Although platelets and platelet-associated P-selectin contribute to cardiovascular disease inflammation, their role in CMV-induced vascular responses is unknown. We assessed the role of platelets in CMV-induced microvascular dysfunction by depleting platelets and developing bone marrow chimeric mice deficient in platelet P-selectin. Wild-type and chimeric mice received mock or murine (m)CMV intraperitoneally. Five weeks later, some mice were switched to a high-cholesterol diet (HC) to investigate the synergism between mCMV and HC. Arteriolar vasodilation and recruitment of leukocytes and donor platelets in venules were measured at 11wk. mCMV with or without HC caused significant endothelial dysfunction in arterioles. Platelet depletion restored normal vasodilation in mCMV-HC but not mCMV-ND mice, whereas protection was seen in both groups for platelet P-selectin chimeras. Only mCMV + HC elevated leukocyte and platelet recruitment in venules. Leukocyte adhesion was reduced to mock levels by acute platelet depletion but was only partially decreased in platelet P-selectin chimeras. Platelets from mCMV-HC mice and, to a lesser extent, mCMV-ND but not mock-HC mice showed significant adhesion in mCMV-HC recipients. Our findings implicate a role for platelets, acting through P-selectin, in CMV-induced arteriolar dysfunction and suggest that the addition of HC leads to a platelet-dependent, inflammatory infiltrate that is only partly platelet P-selectin dependent. CMV appeared to have a stronger activating influence than HC on platelets and may represent an additional therapeutic target in vulnerable patients.


Assuntos
Plaquetas/fisiologia , Infecções por Citomegalovirus/fisiopatologia , Microvasos/fisiopatologia , Selectina-P/metabolismo , Vasodilatação , Animais , Plaquetas/metabolismo , Adesão Celular , Colesterol/farmacologia , Infecções por Citomegalovirus/metabolismo , Dieta Hiperlipídica , Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/virologia , Muromegalovirus/patogenicidade
8.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260582

RESUMO

Background: Neutrophil-mediated persistent inflammation and neutrophil extracellular trap formation (NETosis) promote deep vein thrombosis (DVT). CD14, a co-receptor for toll-like receptor 4 (TLR4), is actively synthesized by neutrophils, and the CD14/TLR4 signaling pathway has been implicated in proinflammatory cytokine overproduction and several aspects of thromboinflammation. The role of CD14 in the pathogenesis of DVT remains unclear. Objective: To determine whether CD14 blockade improves DVT outcomes. Methods: Bulk RNA sequencing and proteomic analyses were performed using isolated neutrophils following inferior vena cava (IVC) stenosis in mice. DVT outcomes (IVC thrombus weight and length, thrombosis incidence, neutrophil recruitment, and NETosis) were evaluated following IVC stenosis in mice treated with a specific anti-CD14 antibody, 4C1, or control antibody. Results: Mice with IVC stenosis exhibited increased plasma levels of granulocyte colony-stimulating factor (G-CSF) along with a higher neutrophil-to-lymphocyte ratio and increased plasma levels of cell-free DNA, elastase, and myeloperoxidase. Quantitative measurement of total neutrophil mRNA and protein expression revealed distinct profiles in mice with IVC stenosis compared to mice with sham surgery. Neutrophils of mice with IVC stenosis exhibited increased inflammatory transcriptional and proteomic responses, along with increased expression of CD14. Treatment with a specific anti-CD14 antibody, 4C1, did not result in any significant changes in the IVC thrombus weight, thrombosis incidence, or neutrophil recruitment to the thrombus. Conclusion: The results of the current study are important for understanding the role of CD14 in the regulation of DVT and suggest that CD14 lacks an essential role in the pathogenesis of DVT following IVC stenosis.

9.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498701

RESUMO

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Assuntos
Integrinas , Neutrófilos , Acidente Vascular Cerebral , Molécula 1 de Adesão de Célula Vascular , Trombose Venosa , Animais , Humanos , Masculino , Camundongos , Adesão Celular , Modelos Animais de Doenças , Integrinas/metabolismo , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/etiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/etiologia
10.
J Exp Med ; 204(7): 1595-601, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-17562818

RESUMO

There is growing evidence for an interplay between inflammatory and coagulation pathways in acute and chronic inflammatory diseases. However, it remains unclear whether components of the coagulation pathway, such as tissue factor (TF), contribute to intestinal inflammation, and whether targeting TF will blunt the inflammatory cell recruitment, tissue injury, and enhanced thrombus formation that occur in experimental colitis. Mice were fed 3% dextran sodium sulfate (DSS) to induce colonic inflammation, with some mice receiving a mouse TF-blocking antibody (muTF-Ab). The adhesion of leukocytes and platelets in colonic venules, light/dye-induced thrombus formation in cremaster muscle microvessels, as well as disease activity index, thrombin-antithrombin (TAT) complexes in plasma, and histopathologic changes in the colonic mucosa were monitored in untreated and muTF-Ab-treated colitic mice. In untreated mice, DSS elicited the recruitment of adherent leukocytes and platelets in colonic venules, caused gross and histologic injury, increased plasma TAT complexes, and enhanced thrombus formation in muscle arterioles. muTF-Ab prevented elevation in TAT complexes, reduced blood cell recruitment and tissue injury, and blunted thrombus formation in DSS colitic mice. These findings implicate TF in intestinal inflammation and support an interaction between inflammation and coagulation in experimental colitis.


Assuntos
Colite/patologia , Colite/fisiopatologia , Inflamação/fisiopatologia , Tromboplastina/fisiologia , Trombose/fisiopatologia , Animais , Antitrombinas/fisiologia , Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Colo/irrigação sanguínea , Modelos Animais de Doenças , Leucócitos/fisiologia , Camundongos , Microcirculação/fisiologia
11.
Inflamm Res ; 62(2): 155-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23076073

RESUMO

OBJECTIVE AND DESIGN: Hepatic microvascular dysfunction is a critical event in the development of liver failure during sepsis. Activated blood cells and reactive oxygen and nitrogen species (RONS) have been implicated in the pathogenesis of sepsis. METHODS: Intravital-videomicroscopy was used to determine whether RONS contribute to the recruitment of leukocytes/platelets in the hepatic microvasculature during sepsis. Six hours following cecal-ligation and puncture (CLP), disturbances of the hepatic microvasculature were assessed in WT-mice (C57Bl/6 J; n = 8), in mice lacking gp91(phox)(n = 5), overexpressing superoxide-dismutase (SOD, n = 8), in WT-mice treated with a NOS-inhibitor (L-NAME, n = 5), lacking nNOS, eNOS or iNOS (n = 5 each), treated with the NO-donor DetaNO (n = 5), in WT-mice treated with gadolinium-chloride (GdCl(2), n = 5) and compared to a group of WT-mice following a sham operation (n = 8). Six hours post-CLP, the adhesion of leukocytes and platelets in terminal hepatic venules (THV) and sinusoids was quantified. RESULTS: In WT-mice, CLP elicited increases in the number of adherent leukocytes and platelets. Similar responses to CLP were noted in mice overexpressing SOD or lacking either eNOS or gp91(phox). The blood-cell recruitment was significantly blunted in septic iNOS-knockout mice and this response was reversed by pre-treatment with DetaNO. CONCLUSION: These findings suggest that iNOS-derived NO is a determinant of the pro-inflammatory phenotype assumed by the hepatic microvasculature during sepsis.


Assuntos
Hepatopatias/imunologia , Óxido Nítrico Sintase/imunologia , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Sepse/imunologia , Alanina Transaminase/sangue , Animais , Pressão Sanguínea , Adesão Celular , Contagem de Células , Citocinas/sangue , Gadolínio/farmacologia , Contagem de Leucócitos , Hepatopatias/etiologia , Hepatopatias/fisiopatologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Óxido Nítrico Sintase/deficiência , Óxido Nítrico Sintase/genética , Contagem de Plaquetas , Sepse/complicações , Sepse/fisiopatologia , Superóxido Dismutase/genética
12.
Res Pract Thromb Haemost ; 7(4): 100170, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274177

RESUMO

Patients with acute ischemic stroke are at a high risk of venous thromboembolism (VTE), such as deep vein thrombosis (DVT), estimated to affect approximately 80,000 patients with stroke each year in the United States. The prevalence of symptomatic DVT after acute stroke is approximately 10%. VTE is associated with increased rates of in-hospital death and disability, with higher prevalence of in-hospital complications and increased 1-year mortality in patients with stroke. Current guidelines recommend the use of pharmacologic VTE prophylaxis in patients with acute ischemic stroke. However, thromboprophylaxis prevents only half of expected VTE events and is associated with high risk of bleeding, suggesting the need for targeted alternative treatments to reduce VTE risk in these patients. Neutrophils are among the first cells in blood to respond after ischemic stroke. Importantly, coordinated interactions among neutrophils, platelets, and endothelial cells contribute to the development of DVT. In case of stroke and other related immune disorders, such as antiphospholipid syndrome, neutrophils potentiate thrombus propagation through the formation of neutrophil-platelet aggregates, secreting inflammatory mediators, complement activation, releasing tissue factor, and producing neutrophil extracellular traps. In this illustrated review article, we present epidemiology and management of poststroke VTE, preclinical and clinical evidence of neutrophil hyperactivation in stroke, and mechanisms for neutrophil-mediated VTE in the context of stroke. Given the hyperactivation of circulating neutrophils in patients with stroke, we propose that a better understanding of molecular mechanisms leading to neutrophil activation may result in the development of novel therapeutics to reduce the risk of VTE in this patient population.

13.
Redox Biol ; 62: 102633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924684

RESUMO

Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Sulfetos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Córtex Cerebral/metabolismo , Atrofia/complicações , Atrofia/metabolismo , Atrofia/patologia , Encéfalo/metabolismo
14.
J Physiol ; 590(5): 1023-34, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22183721

RESUMO

Inflammation is an underlying feature of a variety of human diseases. An important manifestation of this pathophysiological response is microvascular dysfunction, which includes the activation of vascular endothelial cells, and circulating leucocytes and platelets. While endothelial cells and leucocytes are widely accepted as critical players in the microvascular alterations induced by inflammation, recent attention has focused on the modulatory role of platelets, which act both as effector and target cells in inflamed microvessels. Evidence is presented to demonstrate the capacity for 'cross-talk' between platelets and other cells (endothelial cells, leucocytes) that contribute to an inflammatory response, and to illustrate the pathophysiological consequences of these interactions of platelets with other cells within the microvasculature.


Assuntos
Plaquetas/fisiologia , Endotélio Vascular/fisiopatologia , Inflamação/fisiopatologia , Microvasos/fisiopatologia , Animais , Células Endoteliais/fisiologia , Humanos , Leucócitos/fisiologia
15.
Pathophysiology ; 29(3): 570-582, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36136071

RESUMO

Multiple sclerosis (MS) is a leading cause of neurodegenerative disability in younger individuals. When diagnosed early, MS can be managed more effectively, stabilizing clinical symptoms and delaying disease progression. The identification of specific serum biomarkers for early-stage MS could facilitate more successful treatment of this condition. Because MS is an inflammatory disease, we assessed changes in enzymes of the endothelial hydrogen sulfide (H2S) pathway in response to inflammatory cytokines. Blotting analysis was conducted to detect Cystathionine γ-lyase (CSE), Cystathionine beta synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MST) in human brain microvascular endothelial apical and basolateral microparticles (MPs) and cells following exposure to tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). CSE was increased in MPs and cells by exposure to TNF-α/IFN-γ; CBS was elevated in apical MPs but not in cells or basolateral MPs; MST was not significantly affected by cytokine exposure. To test how our findings relate to MS patients, we evaluated levels of CSE, CBS, and MST in serum samples from healthy control and MS patients. We found significantly decreased levels of CBS and MST (p = 0.0004, 0.009) in MS serum samples, whereas serum levels of CSE were marginally increased (p = 0.06). These observations support increased CSE and lower CBS and MST expression being associated with the vascular inflammation in MS. These changes in endothelial-derived sulfide enzymes at sites of inflammation in the brain may help to explain sulfide-dependent changes in vascular dysfunction/neuroinflammation underlying MS. These findings further support the use of serum samples to assess enzymatic biomarkers derived from circulating MPs. For example, "liquid biopsy" can be an important tool for allowing early diagnosis of MS, prior to the advanced progression of neurodegeneration associated with this disease.

16.
Stroke ; 42(3): 806-11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257828

RESUMO

BACKGROUND AND PURPOSE: The therapeutic potential of bone marrow stromal cells (BMSCs) has been demonstrated in different models of stroke. Although it is well established that BMSCs selectively migrate to the site of brain injury, the mechanisms underlying this process are poorly understood. This study addresses the hypothesis that selectins mediate the recruitment of BMSCs into the postischemic cerebral microvasculature. METHODS: Focal ischemic stroke was induced by middle cerebral artery occlusion and reperfusion. Cell recruitment was monitored using either fluorescent- or radiolabeled BMSCs detected by intravital microscopy or tissue radioactivity. Mice were treated with either a blocking antibody against P- or E-selectin or with the nonselective selectin antagonist, fucoidin. The role of CD44 in cell recruitment was evaluated using BMSCs from CD44 knockout mice. RESULTS: Middle cerebral artery occlusion and reperfusion was associated with a significantly increased adhesion of BMSCs in cerebral venules compared with sham mice. Immunoneutralization of either E- or P-selectin blocked the middle cerebral artery occlusion and reperfusion-induced recruitment of adherent BMSCs. An attenuated recruitment response in the postischemic hemisphere was also noted after fucoidin treatment or administration of CD44-deficient BMSCs. CONCLUSIONS: Cerebral vascular endothelium assume a proadhesive phenotype after ischemic stroke that favors the recruitment of BMSCs, which use both P- and E-selectin to home into the infarct site. CD44 may serve as the critical ligand for selectin-mediated BMSC recruitment.


Assuntos
Células da Medula Óssea/metabolismo , Isquemia Encefálica/metabolismo , Movimento Celular/fisiologia , Selectina E/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Microvasos/metabolismo , Selectina-P/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/patologia , Isquemia Encefálica/patologia , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular/genética , Células Cultivadas , Selectina E/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/fisiologia , Imunofenotipagem , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Microvasos/citologia , Microvasos/patologia , Selectina-P/metabolismo , Distribuição Aleatória , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/patologia
17.
Microcirculation ; 18(6): 452-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21457388

RESUMO

OBJECTIVE: Cytomegalovirus has been implicated in cardiovascular disease, possibly through the induction of inflammatory processes. P-selectin and L-selectin are adhesion molecules that mediate early microvascular responses to inflammatory stimuli. This study examined the role of these selectins in the microvascular dysfunction that occurs during persistent CMV infection. METHODS: C57Bl/6, P- or L-selectin-deficient mice were mock-inoculated or infected with murine CMV, and five weeks later placed on normal diet or high cholesterol diet for six weeks. P-selectin expression was measured or intravital microscopy was performed to determine arteriolar vasodilation and venular blood cell recruitment. RESULTS: P-selectin expression was significantly increased in the heart, lung, and spleen of mCMV-ND, but not mCMV-HC C57Bl/6. mCMV-ND and mCMV-HC exhibited impaired arteriolar function, which was reversed by treatment with an anti-P-selectin antibody, but not L-selectin deficiency. mCMV-HC also showed elevated leukocyte and platelet recruitment. P-selectin inhibition abrogated, whereas L-selectin deficiency partially reduced these responses. CONCLUSIONS: We provide the first evidence for P-selectin upregulation by persistent mCMV infection and implicate this adhesion molecule in the associated arteriolar dysfunction. P-selectin, and to a lesser extent L-selectin, mediates the leukocyte and platelet recruitment induced by CMV infection combined with hypercholesterolemia.


Assuntos
Infecções por Herpesviridae/metabolismo , Hipercolesterolemia/metabolismo , Muromegalovirus/metabolismo , Selectina-P/biossíntese , Regulação para Cima , Animais , Anticorpos/farmacologia , Arteríolas/metabolismo , Arteríolas/virologia , Plaquetas/metabolismo , Infecções por Herpesviridae/genética , Hipercolesterolemia/genética , Hipercolesterolemia/virologia , Selectina L/genética , Selectina L/metabolismo , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Selectina-P/antagonistas & inibidores , Selectina-P/genética , Fatores de Tempo
18.
Am J Pathol ; 177(4): 2134-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802174

RESUMO

Cytomegalovirus (CMV) persistently infects more than 60% of the worldwide population. In immunocompetent hosts, it has been implicated in several diseases, including cardiovascular disease, possibly through the induction of inflammatory pathways. Cardiovascular risk factors promote an inflammatory phenotype in the microvasculature long before clinical disease is evident. This study determined whether CMV also impairs microvascular homeostasis and synergizes with hypercholesterolemia to exaggerate these responses. Intravital microscopy was used to assess endothelium-dependent and -independent arteriolar vasodilation and venular leukocyte and platelet adhesion in mice after injection with either mock inoculum or murine CMV (mCMV). Mice were fed a normal (ND) or high-cholesterol (HC) diet beginning at 5 weeks postinfection (p.i.), or a HC diet for the final 4 weeks of infection. mCMV-ND mice exhibited impaired endothelium-dependent vasodilation versus mock-ND at 9 and 12 weeks and endothelium-independent arteriolar dysfunction by 24 weeks. Transient mild leukocyte adhesion occurred in mCMV-ND venules at 7 and 21 weeks p.i. HC alone caused temporary arteriolar dysfunction and venular leukocyte and platelet recruitment, which were exaggerated and prolonged by mCMV infection. The time of introduction of HC after mCMV infection determined whether mCMV+HC led to worse venular inflammation than either factor alone. These findings reveal a proinflammatory influence of persistent mCMV on the microvasculature, and suggest that mCMV infection enhances microvasculature susceptibility to both inflammatory and thrombogenic responses caused by hypercholesterolemia.


Assuntos
Arteríolas/patologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Endotélio Vascular/patologia , Hipercolesterolemia/imunologia , Vênulas/patologia , Animais , Arteríolas/imunologia , Adesão Celular , Colesterol/administração & dosagem , Colesterol/sangue , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Endotélio Vascular/imunologia , Hipercolesterolemia/patologia , Hipercolesterolemia/virologia , Inflamação/etiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Adesividade Plaquetária/imunologia , Reação em Cadeia da Polimerase , Vasodilatação , Vênulas/imunologia
19.
Biomedicines ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829896

RESUMO

Ischemic stroke remains the leading cause of neurologically based morbidity and mortality. Current stroke treatment is limited to two classes of FDA-approved drugs: thrombolytic agents (tissue plasminogen activator (tPA)) and antithrombotic agents (aspirin and heparin), which have a narrow time-window (<4.5 h) for administration after onset of stroke symptoms. While thrombolytic agents restore perfusion, they carry serious risks for hemorrhage, and do not influence damage responses during reperfusion. Consequently, stroke therapies that can suppress deleterious effects of ischemic injury are desperately needed. Angiotensin converting enzyme-2 (ACE2) has been recently suggested to beneficially influence experimental stroke outcomes by converting the vasoconstrictor Ang II into the vasodilator Ang 1-7. In this review, we extensively discuss the protective functions of ACE2-Ang (1-7)-MasR axis of renin angiotensin system (RAS) in ischemic stroke.

20.
EBioMedicine ; 63: 103161, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33348090

RESUMO

BACKGROUND: Besides long-term trans-differentiation into neural cells, benefits of stem cell therapy (SCT) in ischemic stroke may include secretion of protective factors, which partly reflects extracellular vesicle (EVs) released by stem cell. However, the mechanism(s) by which stem cells/EVs limit stroke injury have yet to be fully defined. METHODS: We evaluated the protection effect of human placenta mesenchymal stem cells (hPMSC) as a potential form of SCT in experimental ischemic stroke 'transient middle cerebral artery occusion (MCAO)/reperfusion' mice model. FINDINGS: We found for the first time that intraperitoneal administration of hPMSCs or intravenous hPMSC-derived EVs, given at the time of reperfusion, significantly protected the ipsilateral hemisphere from ischemic injury. This protection was associated with significant restoration of normal blood flow to the post-MCAO brain. More importantly, EVs derived from hPMSC promote paracrine-based protection of SCT in the MCAO model in a cholesterol/lipid-dependent manner. INTERPRETATION: Together, our results demonstrated beneficial effects of hPMSC/EVs in experimental stroke models which could permit the rapid "translation" of these cells into clinical trials in the near-term.


Assuntos
Circulação Cerebrovascular , Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Barreira Hematoencefálica/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Oxigênio/metabolismo , Permeabilidade , Gravidez , Acidente Vascular Cerebral/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA