Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(16): 8909-8916, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673086

RESUMO

Technical hexachlorocyclohexane (HCH) mixtures and Lindane (γ-HCH) have been produced in Bitterfeld-Wolfen, Germany, for about 30 years until 1982. In the vicinity of the former dump sites and production facilities, large plumes of HCHs persist within two aquifer systems. We studied the natural attenuation of HCH in these groundwater systems through a combination of enantiomeric and carbon isotope fractionation to characterize the degradation of α-HCH in the areas downstream of a former disposal and production site in Bitterfeld-Wolfen. The concentration and isotope composition of α-HCH from the Quaternary and Tertiary aquifers were analyzed. The carbon isotope compositions were compared to the source signal of waste deposits for the dumpsite and highly contaminated areas. The average value of δ13C at dumpsite was -29.7 ± 0.3 ‰ and -29.0 ± 0.1 ‰ for (-) and (+)α-HCH, respectively, while those for the ß-, γ-, δ-HCH isomers were -29.0 ± 0.3 ‰, -29.5 ± 0.4 ‰, and -28.2 ± 0.2 ‰, respectively. In the plume, the enantiomer fraction shifted up to 0.35, from 0.50 at source area to 0.15 (well T1), and was found accompanied by a carbon isotope enrichment of 5 ‰ and 2.9 ‰ for (-) and (+)α-HCH, respectively. The established model for interpreting isotope and enantiomer fractionation patterns showed potential for analyzing the degradation process at a field site with a complex history with respect to contamination and fluctuating geochemical conditions.


Assuntos
Água Subterrânea , Hexaclorocicloexano , Alemanha , Poluentes Químicos da Água
2.
J Contam Hydrol ; 238: 103759, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33461044

RESUMO

Natural attenuation processes depend on the availability of suitable electron acceptors. At the megasite Zeitz, concentrations of the main contaminant benzene were observed to increase constantly in the lower aquifer to levels of more than 2.5 mM. This was accompanied by decreasing concentrations of sulphate (SO42-), which has been previously shown to be the main electron acceptor for benzene oxidation at this site, resulting in an electron acceptor-limited, sulphidic benzene plume. Therefore, a field experiment was conducted to stimulate benzene biodegradation by injecting nitrate (NO3-) into the sulphidic benzene plume aiming (i) to recycle sulphate by nitrate-dependent sulphide oxidation, and (ii) to serve as direct electron acceptor for benzene oxidation. Within 60 days, 6.74 tons sodium nitrate (NaNO3) were injected into the lower aquifer, and the resulting biogeochemical effects within the benzene plume were monitored for more than one year by chemical and microbiological analyses of groundwater samples taken from various depths of ten monitoring wells located in three observation lines downstream of nitrate injection. Nitrate was microbiologically consumed, as shown by changes in δ15N-NO3- and δ18O-NO3- values, partial nitrite accumulation, and changing ratios of Na+/NO3-. Main electron donors for nitrate reduction were reduced sulphur compounds, verified by changing δ34S-SO42- and δ18O-SO42- values, partially increasing sulphate concentrations, and strongly increasing abundances of typical sulphur-oxidizing, nitrate-reducing bacterial taxa within the nitrate plume. The general absent hydrogen isotope fractionation of benzene, also in the sulphidic, nitrate-free part of the plume, indicates that benzene was not biodegraded by sulphate-reducing consortia. However, detected small carbon isotope fractionation of benzene points to in situ benzene biodegradation processes in the plume, probably supported by nitrate. In conclusion, nitrate injection resulted in changing redox conditions and recycling of sulphate in the sulphidic, sulphate-depleted benzene plume due to microbial oxidation of reduced sulphur species, leading to presumably favored conditions for in situ benzene biodegradation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Benzeno/análise , Biodegradação Ambiental , Nitratos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 705: 135845, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972920

RESUMO

Covering a plateau area of approximately 125,000 km2, the Urucuia Aquifer System (UAS) represents a national strategic water resource in the drought-stricken Northeastern part of Brazil. Variations in terrestrial water storage (TWS) extracted using a three-model-ensemble from the Gravity Recovery and Climate Experiment (GRACE) mission showed a negative balance equal to water stress. Monthly GRACE-derived water storage changes from 2002 to 2014 were compared with those derived from an independent hydrologic water balance of the region using in situ measurements and estimated evapotranspiration rates. Trend analyses revealed a TWS depletion rate of 6.5 ±â€¯2.6 mm yr-1, but no significant decline in precipitation as observed from available data records. Water storage depletion was found to be driven by anthropogenic impacts rather than by natural climatic variability. The obtained results demonstrate that GRACE is able to adequately capture water storage changes at the subregional scale, particularly during dry seasons.

4.
FEMS Microbiol Ecol ; 94(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385441

RESUMO

The megasite Bitterfeld-Wolfen is highly contaminated as a result of accidents and because of dumping of wastes from local chemical industries in the last century. A variety of contaminants including chlorinated ethenes and benzenes, hexachlorohexanes and chlorinated dioxins can still be found in the groundwater and (river) sediments. Investigations of the in situ microbial transformation of organohalides have been performed only over the last two decades at this megasite. In this review, we summarise the research on the activity of anaerobic dehalogenating bacteria at the field site in Bitterfeld-Wolfen, focusing on chlorinated ethenes, monochlorobenzene and chlorinated dioxins. Various methods and concepts were applied including ex situ cultivation and isolation, and in situ analysis of hydrochemical parameters, compound-specific stable isotope analysis of contaminants, 13C-tracer studies and molecular markers. Overall, biotransformation of organohalides is ongoing at the field site and Dehalococcoides mccartyi species play an important role in the detoxification process in the Bitterfeld-Wolfen region.


Assuntos
Biodegradação Ambiental , Chloroflexi/metabolismo , Sedimentos Geológicos/química , Água Subterrânea/química , Locais de Resíduos Perigosos , Poluentes Químicos da Água/análise , Benzeno/análise , Clorobenzenos/análise , Dioxinas/análise , Halogenação , Rios
5.
Environ Sci Pollut Res Int ; 20(4): 1907-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23532510

RESUMO

A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Hexaclorocicloexano/análise , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Indústria Química , Simulação por Computador , Sistemas de Informação Geográfica , Alemanha , Hidrologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA