Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 67(4): 582-593, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30444064

RESUMO

During inflammatory processes of the central nervous system, helper T cells have the capacity to cross the blood-brain barrier and injure or kill neural cells through cytotoxic mechanisms. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is part of the astrocyte cytoskeleton that can become fragmented in neuroinflammatory conditions. The mechanism of action by which helper T cells with cytotoxic properties injure astrocytes is not completely understood. Primary human astrocytes were obtained from fetal brain tissue. Human helper (CD4+ ) T cells were isolated from peripheral blood mononuclear cells and activated with the superantigen staphylococcal enterotoxin E (SEE). Granzyme B was detected by enzyme linked immunosorbent assay and intracellular flow cytometry. GFAP fragmentation was monitored by western blotting. Cell death was monitored by lactic acid dehydrogenase release and terminal biotin-dUTP nick labeling (TUNEL). Astrocyte migration was monitored by scratch assay. Adult human oligodendrocytes were cultured with sublethally injured astrocytes to determine support function. Helper T cells activated with SEE expressed granzyme B but not perforin. Helper T cells released granzyme B upon contact with astrocytes and caused GFAP fragmentation in a caspase-dependent, MHCII-independent manner. Sublethally injured astrocytes were not apoptotic; however, their processes were thin and elongated, their migration was attenuated, and their ability to support oligodendrocytes was reduced in vitro. Helper T cells can release granzyme B causing sublethal injury to astrocytes, which compromises the supportive functions of astrocytes. Blocking these pathways may lead to improved resolution of neuroinflammatory lesions.


Assuntos
Astrócitos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe II/fisiologia , Adulto , Anticorpos/farmacologia , Astrócitos/efeitos dos fármacos , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , Enterotoxinas/farmacologia , Inibidores Enzimáticos/farmacologia , Feto , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Leucócitos Mononucleares , Oligodendroglia , Oligopeptídeos/farmacologia , Ferimentos e Lesões/patologia
2.
Front Immunol ; 9: 834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867923

RESUMO

In autoimmunity, the balance of different helper T (Th) cell subsets can influence the tissue damage caused by autoreactive T cells. Pro-inflammatory Th1 and Th17 T cells are implicated as mediators of several human autoimmune conditions such as multiple sclerosis (MS). Autologous hematopoietic stem cell transplantation (aHSCT) has been tested in phase 2 clinical trials for MS patients with aggressive disease. Abrogation of new clinical relapses and brain lesions can be seen after ablative aHSCT, accompanied by significant reductions in Th17, but not Th1, cell populations and activity. The cause of this selective decrease in Th17 cell responses following ablative aHSCT is not completely understood. We identified an increase in the kinetics of natural killer (NK) cell reconstitution, relative to CD4+ T cells, in MS patients post-aHSCT, resulting in an increased NK cell:CD4+ T cell ratio that correlated with the degree of decrease in Th17 responses. Ex vivo removal of NK cells from post-aHSCT peripheral blood mononuclear cells resulted in higher Th17 cell responses, indicating that NK cells can regulate Th17 activity. NK cells were also found to be cytotoxic to memory Th17 cells, and this toxicity is mediated through NKG2D-dependent necrosis. Surprisingly, NK cells induced memory T cells to secrete more IL-17A. This was preceded by an early rise in T cell expression of RORC and IL17A mRNA, and could be blocked with neutralizing antibodies against CD58, a costimulatory receptor expressed on NK cells. Thus, NK cells provide initial co-stimulation that supports the induction of a Th17 response, followed by NKG2D-dependent cytotoxicity that limits these cells. Together these data suggest that rapid reconstitution of NK cells following aHSCT contribute to the suppression of the re-emergence of Th17 cells. This highlights the importance of NK cells in shaping the reconstituting immune system following aHSCT in MS patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais/imunologia , Esclerose Múltipla Recidivante-Remitente/terapia , Células Th17/imunologia , Autoimunidade , Antígenos CD58/imunologia , Citocinas/imunologia , Proteínas Ligadas por GPI/imunologia , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Interleucina-17/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Transplante Autólogo
3.
J Neuroimmunol ; 310: 143-149, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28606377

RESUMO

Microglia provide immune surveillance within the brain and spinal cord. Various microglial morphologies include ramified, amoeboid, and pseudopodic. The link between form and function is not clear, especially for human adult microglia which are limited in availability for study. Here, we examined primary human microglia isolated from normal-appearing white matter. Pseudopodic and amoeboid microglia were effective phagocytes, taking up E. coli bioparticles using ruffled cell membrane sheets and retrograde transport. Pseudopodic and amoeboid microglia were more effective phagocytes as compared to ramified microglia or monocyte-derived dendritic cells. Thus, amoeboid and pseudopodic microglia may both be effective as brain scavengers.


Assuntos
Amoeba/citologia , Microglia/fisiologia , Fagócitos/citologia , Fagócitos/fisiologia , Imagem com Lapso de Tempo , Actinas/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Infecções Bacterianas , Proteínas de Ligação ao Cálcio , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Epilepsia/patologia , Escherichia coli/patogenicidade , Humanos , Proteínas dos Microfilamentos , Microglia/microbiologia , Microglia/patologia , Lobo Temporal/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA