Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag ; 56: 53-62, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27422047

RESUMO

Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins.


Assuntos
Resíduos de Alimentos , Carne/análise , Reciclagem/métodos , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Solo/química , Microbiologia do Solo , Espanha
2.
J Agric Food Chem ; 60(8): 2008-17, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22300509

RESUMO

A new type of superphosphate (organic complexed superphosphate (CSP)) has been developed by the introduction of organic chelating agents, preferably a humic acid (HA), into the chemical reaction of single superphosphate (SSP) production. This modification yielded a product containing monocalcium phosphate complexed by the chelating organic agent through Ca bridges. Theoretically, the presence of these monocalcium-phosphate-humic complexes (MPHC) inhibits phosphate fixation in soil, thus increasing P fertilizer efficiency. This study investigateed the structural and functional features of CSP fertilizers produced employing diverse HA with different structural features. To this end were used complementary analytical techniques: solid-phase ³¹P NMR, ¹³C NMR, laser-confocal microscopy, X-ray diffraction, and molecular modeling. Finally, the agronomical efficiency of four CSP have been compared with that of SSP as P sources for wheat plants grown in both alkaline and acidic soils in greenhouse pot trials under controlled conditions. The results obtained from the diverse analytical studies showed the formation of MPHC in CSP. Plant-soil studies showed that CSP products were more efficient than SSP in providing available phosphate for wheat plants cultivated in various soils with different physicochemical features. This fact is probably associated with the ability of CSP complexes to inhibit phosphate fixation in soil.


Assuntos
Quelantes/química , Quelantes/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Fertilizantes/análise , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Quelantes/síntese química , Fenômenos Químicos , Difosfatos/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA