Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 58(30): 3260-3279, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31268299

RESUMO

The MM2060 (cobD) gene from Methanosarcina mazei strain Gö1 encodes a protein (MmCobD) with l-threonine kinase (PduX) and l-threonine-O-3-phosphate decarboxylase (CobD) activities. In addition to the unexpected l-Thr kinase activity, MmCobD has an extended carboxy-terminal (C-terminal) region annotated as a putative metal-binding zinc finger-like domain. Here, we demonstrate that the C-terminus of MmCobD is a ferroprotein containing ∼25 non-heme iron atoms per monomer of protein. The absence of the C-terminus substantially reduces, but does not abolish, enzymatic activities in vitro and in vivo. Single-residue substitutions of C-terminal putative Fe-binding cysteinyl and histidinyl residues resulted in the loss of Fe and changes in enzyme activity levels. Salmonella enterica ΔpduX and ΔcobD strains were used as heterologous hosts to assess coenzyme B12 biosynthesis as a function of 17 MmCobD variants tested. Some of the latter displayed 5-fold higher enzymatic activity in vitro and enhanced the growth rate of the S. enterica strains that synthesized them. Most of the MmCobD variants tested were up to 6-fold less active in vitro and supported slow growth rates of the S. enterica strains that synthesized them; some substitutions abolished enzyme activity. MmCobD exhibited an ultraviolet-visible absorption spectrum consistent with [4Fe-4S] clusters that appeared to be susceptible to oxidation by H2O2 and reduction by sodium dithionite. The presence of FeS clusters in MmCobD was corroborated by electron paramagnetic resonance and magnetic circular dichroism studies. Collectively, our results suggest that MmCobD contains one or more diamagnetic [4Fe-4S]2+ center(s) that may play a structural or regulatory role.


Assuntos
Ferredoxinas/metabolismo , Methanosarcina/enzimologia , Sequência de Aminoácidos , Carboxiliases , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ferredoxinas/genética , Methanosarcina/genética , Ligação Proteica/fisiologia
2.
Biochemistry ; 57(34): 5088-5095, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30071158

RESUMO

The EutT enzyme from Listeria monocytogenes ( LmEutT) is a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes that catalyze the biosynthesis of adenosylcobalamin (AdoCbl) from exogenous Co(II)rrinoids and ATP. Apart from EutT-type ACATs, two evolutionary unrelated types of ACATs have been identified, termed PduO and CobA. Although the three types of ACATs are nonhomologous, they all generate a four-coordinate cob(II)alamin (4C Co(II)Cbl) species to facilitate the formation of a supernucleophilic Co(I)Cbl intermediate capable of attacking the 5'-carbon of cosubstrate ATP. Previous spectroscopic studies of the EutT ACAT from Salmonella enterica ( SeEutT) revealed that this enzyme requires a divalent metal cofactor for the conversion of 5C Co(II)Cbl to a 4C species. Interestingly, LmEutT does not require a divalent metal cofactor for catalytic activity, which exemplifies an interesting phylogenetic divergence among the EutT enzymes. To explore if this disparity in the metal cofactor requirement among EutT enzymes correlates with differences in substrate specificity or the mechanism of Co(II)Cbl reduction, we employed various spectroscopic techniques to probe the interaction of Co(II)Cbl and cob(II)inamide (Co(II)Cbi+) with LmEutT in the absence and presence of cosubstrate ATP. Our data indicate that LmEutT displays a similar substrate specificity as SeEutT and can bind both Co(II)Cbl and Co(II)Cbi+ when complexed with MgATP, though it exclusively converts Co(II)Cbl to a 4C species. Notably, LmEutT is the most effective ACAT studied to date in generating the catalytically relevant 4C Co(II)Cbl species, achieving a >98% 5C → 4C conversion yield on the addition of just over one mol equiv of cosubstrate MgATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Listeria monocytogenes/enzimologia , Vitamina B 12/análogos & derivados , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Vitamina B 12/metabolismo
3.
Inorg Chem ; 55(22): 11839-11853, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27801576

RESUMO

Mononuclear non-heme iron complexes that serve as structural and functional mimics of the thiol dioxygenases (TDOs), cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), have been prepared and characterized with crystallographic, spectroscopic, kinetic, and computational methods. The high-spin Fe(II) complexes feature the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand that replicates the three histidine (3His) triad of the TDO active sites. Further coordination with bidentate l-cysteine ethyl ester (CysOEt) or cysteamine (CysAm) anions yielded five-coordinate (5C) complexes that resemble the substrate-bound forms of CDO and ADO, respectively. Detailed electronic-structure descriptions of the [Fe(Ph2TIP)(LS,N)]BPh4 complexes, where LS,N = CysOEt (1) or CysAm (2), were generated through a combination of spectroscopic techniques [electronic absorption, magnetic circular dichroism (MCD)] and density functional theory (DFT). Complexes 1 and 2 decompose in the presence of O2 to yield the corresponding sulfinic acid (RSO2H) products, thereby emulating the reactivity of the TDO enzymes and related complexes. Rate constants and activation parameters for the dioxygenation reactions were measured and interpreted with the aid of DFT calculations for O2-bound intermediates. Treatment of the TDO models with nitric oxide (NO)-a well-established surrogate of O2-led to a mixture of high-spin and low-spin {FeNO}7 species at low temperature (-70 °C), as indicated by electron paramagnetic resonance (EPR) spectroscopy. At room temperature, these Fe/NO adducts convert to a common species with EPR and infrared (IR) features typical of cationic dinitrosyl iron complexes (DNICs). To complement these results, parallel spectroscopic, computational, and O2/NO reactivity studies were carried out using previously reported TDO models that feature an anionic hydrotris(3-phenyl-5-methyl-pyrazolyl)borate (Ph,MeTp-) ligand. Though the O2 reactivities of the Ph2TIP- and Ph,MeTp-based complexes are quite similar, the supporting ligand perturbs the energies of Fe 3d-based molecular orbitals and modulates Fe-S bond covalency, suggesting possible rationales for the presence of neutral 3His coordination in CDO and ADO.


Assuntos
Dioxigenases/química , Modelos Químicos , Óxido Nítrico/química , Oxigênio/química , Compostos de Sulfidrila/química , Domínio Catalítico , Cristalografia por Raios X , Elétrons , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA