Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(48): 18477-18493, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309985

RESUMO

Frizzleds (FZDs) are receptors for secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, initiating an important signal transduction network in multicellular organisms. FZDs are G protein-coupled receptors (GPCRs), which are well known to be regulated by phosphorylation, leading to specific downstream signaling or receptor desensitization. The role and underlying mechanisms of FZD phosphorylation remain largely unexplored. Here, we investigated the phosphorylation of human FZD6 Using MS analysis and a phospho-state- and -site-specific antibody, we found that Ser-648, located in the FZD6 C terminus, is efficiently phosphorylated by casein kinase 1 ϵ (CK1ϵ) and that this phosphorylation requires the scaffolding protein Dishevelled (DVL). In an overexpression system, DVL1, -2, and -3 promoted CK1ϵ-mediated FZD6 phosphorylation on Ser-648. This DVL activity required an intact DEP domain and FZD-mediated recruitment of this domain to the cell membrane. Substitution of the CK1ϵ-targeted phosphomotif reduced FZD6 surface expression, suggesting that Ser-648 phosphorylation controls membrane trafficking of FZD6 Phospho-Ser-648 FZD6 immunoreactivity in human fallopian tube epithelium was predominantly apical, associated with cilia in a subset of epithelial cells, compared with the total FZD6 protein expression, suggesting that FZD6 phosphorylation contributes to asymmetric localization of receptor function within the cell and to epithelial polarity. Given the key role of FZD6 in planar cell polarity, our results raise the possibility that asymmetric phosphorylation of FZD6 rather than asymmetric protein distribution accounts for polarized receptor signaling.


Assuntos
Caseína Quinase I/metabolismo , Proteínas Desgrenhadas/fisiologia , Receptores Frizzled/metabolismo , Sequência de Aminoácidos , Anticorpos/imunologia , Membrana Celular/metabolismo , Proteínas Desgrenhadas/química , Epitélio/metabolismo , Tubas Uterinas/metabolismo , Feminino , Receptores Frizzled/química , Células HEK293 , Humanos , Espectrometria de Massas , Fosfoproteínas/imunologia , Fosforilação , Serina/metabolismo , Transdução de Sinais
2.
Mol Pharmacol ; 90(4): 447-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458145

RESUMO

Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development.


Assuntos
Receptores Frizzled/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Wnt/farmacologia , Proteínas Desgrenhadas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Receptores Frizzled/química , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Nat Commun ; 10(1): 667, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737406

RESUMO

Class F receptors are considered valuable therapeutic targets due to their role in human disease, but structural changes accompanying receptor activation remain unexplored. Employing population and cancer genomics data, structural analyses, molecular dynamics simulations, resonance energy transfer-based approaches and mutagenesis, we identify a conserved basic amino acid in TM6 in Class F receptors that acts as a molecular switch to mediate receptor activation. Across all tested Class F receptors (FZD4,5,6,7, SMO), mutation of the molecular switch confers an increased potency of agonists by stabilizing an active conformation as assessed by engineered mini G proteins as conformational sensors. Disruption of the switch abrogates the functional interaction between FZDs and the phosphoprotein Dishevelled, supporting conformational selection as a prerequisite for functional selectivity. Our studies reveal the molecular basis of a common activation mechanism conserved in all Class F receptors, which facilitates assay development and future discovery of Class F receptor-targeting drugs.


Assuntos
Modelos Teóricos , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/genética
4.
Cell Signal ; 38: 85-96, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28668722

RESUMO

Frizzleds (FZDs) are unconventional G protein-coupled receptors, which activate diverse intracellular signaling pathways via the phosphoprotein Disheveled (DVL) and heterotrimeric G proteins. The interaction interplay of FZDs with DVL and G proteins is complex, involves different regions of FZD and the potential dynamics are poorly understood. In the present study, we aimed to characterize the function of a highly conserved tyrosine (Y2502.39) in the intracellular loop 1 (IL1) of human FZD4. We have found Y2502.39 to be crucial for DVL2 interaction and DVL2 translocation to the plasma membrane. Mutant FZD4-Y2502.39F, impaired in DVL2 binding, was defective in both ß-catenin-dependent and ß-catenin-independent WNT signaling induced in Xenopus laevis embryos. The same mutant maintained interaction with the heterotrimeric G proteins Gα12 and Gα13 and was able to mediate WNT-induced G protein dissociation and G protein-dependent YAP/TAZ signaling. We conclude from modeling and dynamics simulation efforts that Y2502.39 is important for the structural integrity of the FZD-DVL, but not for the FZD-G protein interface and hypothesize that the interaction network of Y2502.39 and H3484.46 plays a role in specifying downstream signaling pathways induced by the receptor.


Assuntos
Sequência Conservada , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Embrião não Mamífero/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Polimerização , Ligação Proteica , Transdução de Sinais , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Via de Sinalização Wnt , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA