Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(2)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208779

RESUMO

Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).

2.
Sensors (Basel) ; 15(10): 26709-25, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26506349

RESUMO

During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

3.
Sensors (Basel) ; 15(3): 5803-19, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25763648

RESUMO

The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.


Assuntos
Acústica , Fraturas do Fêmur/fisiopatologia , Tecnologia de Sensoriamento Remoto , Fenômenos Biomecânicos , Fraturas do Fêmur/cirurgia , Humanos , Estresse Mecânico
4.
Sensors (Basel) ; 14(8): 15067-83, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25196011

RESUMO

Cortical bone is a highly heterogeneous material at the microscale and has one of the most complex structures among materials. Application of elastic wave techniques to this material is thus very challenging. In such media the initial excitation energy goes into the formation of elastic waves of different modes. Due to "dispersion", these modes tend to separate according to the velocities of the frequency components. This work demonstrates elastic wave measurements on human femur specimens. The aim of the study is to measure parameters like wave velocity, dispersion and attenuation by using broadband acoustic emission sensors. First, four sensors were placed at small intervals on the surface of the bone to record the response after pencil lead break excitations. Next, the results were compared to measurements on a bulk steel block which does not exhibit heterogeneity at the same wave lengths. It can be concluded that the microstructure of the tissue imposes a dispersive behavior for frequencies below 1 MHz and care should be taken for interpretation of the signals. Of particular interest are waveform parameters like the duration, rise time and average frequency, since in the next stage of research the bone specimens will be fractured with concurrent monitoring of acoustic emission.


Assuntos
Fêmur/fisiologia , Acústica/instrumentação , Simulação por Computador , Humanos , Som
5.
Ultramicroscopy ; 253: 113810, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37429066

RESUMO

The rapid collection and indexing of electron diffraction patterns as produced via electron backscatter diffraction (EBSD) has enabled crystallographic orientation and structural determination, as well as additional property-determining strain and dislocation density information with increasing speed, resolution, and efficiency. Pattern indexing quality is reliant on the noise of the collected electron diffraction patterns, which is often convoluted by sample preparation and data collection parameters. EBSD acquisition is sensitive to many factors and thus can result in low confidence index (CI), poor image quality (IQ), and improper minimization of fit, which can result in noisy datasets and misrepresent the microstructure. In an attempt to enable both higher speed EBSD data collection and enable greater orientation fit accuracy with noisy datasets, an image denoising autoencoder was implemented to improve pattern quality. We show that EBSD data processed through the autoencoder results in a higher CI, IQ, and a more accurate degree of fit. In addition, using denoised datasets in HR-EBSD cross correlative strain analysis can result in reduced phantom strain from erroneous calculations due to the increased indexing accuracy and improved correspondence between collected and simulated patterns.

6.
Rev Sci Instrum ; 93(4): 043702, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489885

RESUMO

Laser powder bed fusion (LPBF) is a highly dynamic multi-physics process used for the additive manufacturing (AM) of metal components. Improving process understanding and validating predictive computational models require high-fidelity diagnostics capable of capturing data in challenging environments. Synchrotron x-ray techniques play a vital role in the validation process as they are the only in situ diagnostic capable of imaging sub-surface melt pool dynamics and microstructure evolution during LPBF-AM. In this article, a laboratory scale system designed to mimic LPBF process conditions while operating at a synchrotron facility is described. The system is implemented with process accurate atmospheric conditions, including an air knife for active vapor plume removal. Significantly, the chamber also incorporates a diagnostic sensor suite that monitors emitted optical, acoustic, and electronic signals during laser processing with coincident x-ray imaging. The addition of the sensor suite enables validation of these industrially compatible single point sensors by detecting pore formation and spatter events and directly correlating the events with changes in the detected signal. Experiments in the Ti-6Al-4V alloy performed at the Stanford Synchrotron Radiation Lightsource using the system are detailed with sufficient sampling rates to probe melt pool dynamics. X-ray imaging captures melt pool dynamics at frame rates of 20 kHz with a 2 µm pixel resolution, and the coincident diagnostic sensor data are recorded at 470 kHz. This work shows that the current system enables the in situ detection of defects during the LPBF process and permits direct correlation of diagnostic signatures at the exact time of defect formation.


Assuntos
Lasers , Síncrotrons , Pós , Radiografia , Raios X
7.
Materials (Basel) ; 10(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841186

RESUMO

Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.

8.
Materials (Basel) ; 9(2)2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28787910

RESUMO

Selective laser melting (SLM) is an additive manufacturing (AM) process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance. On the other hand, structural health monitoring (SHM) system technologies are promising and requested from the industry. SHM systems can monitor the integrity of a structure and during the last decades the research has primarily been influenced by bionic engineering. In that aspect a new philosophy for SHM has been developed: the so-called effective structural health monitoring (eSHM) system. The current system uses the design freedom provided by AM. The working principle of the system is based on crack detection by means of a network of capillaries that are integrated in a structure. The main objective of this research is to evaluate the functionality of Ti6Al4V produced by the SLM process in the novel SHM system and to confirm that the eSHM system can successfully detect cracks in SLM components. In this study four-point bending fatigue tests on Ti6Al4V SLM specimens with an integrated SHM system were conducted. Fractographic analysis was performed after the final failure, while finite element simulations were used in order to determine the stress distribution in the capillary region and on the component. It was proven that the SHM system does not influence the crack initiation behavior during fatigue. The results highlight the effectiveness of the eSHM on SLM components, which can potentially be used by industrial and aerospace applications.

9.
Biomed Res Int ; 2015: 801518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413544

RESUMO

BACKGROUND AND PURPOSE: To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. MATERIAL AND METHODS: Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. RESULTS: Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r(2) range of 0.41-0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r(2) = 0.68). CONCLUSIONS: The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction.


Assuntos
Densitometria/métodos , Fêmur/anatomia & histologia , Fêmur/fisiologia , Imageamento por Ressonância Magnética/métodos , Absorciometria de Fóton , Fenômenos Biomecânicos , Densidade Óssea , Humanos , Modelos Lineares , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA