Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Comput Struct Biotechnol J ; 23: 2695-2707, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39035832

RESUMO

Background: The accurate computational prediction of B cell epitopes can vastly reduce the cost and time required for identifying potential epitope candidates for the design of vaccines and immunodiagnostics. However, current computational tools for B cell epitope prediction perform poorly and are not fit-for-purpose, and there remains enormous room for improvement and the need for superior prediction strategies. Results: Here we propose a novel approach that improves B cell epitope prediction by encoding epitopes as binary positional permutation vectors that represent the position and structural properties of the amino acids within a protein antigen sequence that interact with an antibody. This approach supersedes the traditional method of defining epitopes as scores per amino acid on a protein sequence, where each score reflects each amino acids predicted probability of partaking in a B cell epitope antibody interaction. In addition to defining epitopes as binary positional permutation vectors, the approach also uses the 3D macrostructure features of the unbound protein structures, and in turn uses these features to train another deep learning model on the corresponding antibody-bound protein 3D structures. This enables the algorithm to learn the key structural and physiochemical features of the unbound protein and embedded epitope that initiate the antibody binding process helping to eliminate "induced fit" biases in the training data. We demonstrate that the strategy predicts B cell epitopes with improved accuracy compared to the existing tools. Additionally, we show that this approach reliably identifies the majority of experimentally verified epitopes on the spike protein of SARS-CoV-2 not seen by the model during training and generalizes in a very robust manner on dissimilar data not seen by the model during training. Conclusions: With the approach described herein, a primary protein sequence and a query positional permutation vector encoding a putative epitope is sufficient to predict B cell epitopes in a reliable manner, potentially advancing the use of computational prediction of B cell epitopes in biomedical research applications.

2.
BMC Med Genomics ; 17(1): 37, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281021

RESUMO

BACKGROUND: The HLA complex is the most polymorphic region of the human genome, and its improved characterization can help us understand the genetics of human disease as well as the interplay between cancer and the immune system. The main function of HLA genes is to recognize "non-self" antigens and to present them on the cell surface to T cells, which instigate an immune response toward infected or transformed cells. While sequence variation in the antigen-binding groove of HLA may modulate the repertoire of immunogenic antigens presented to T cells, alterations in HLA expression can significantly influence the immune response to pathogens and cancer. METHODS: RNA sequencing was used here to accurately genotype the HLA region and quantify and compare the level of allele-specific HLA expression in tumors and patient-matched adjacent normal tissue. The computational approach utilized in the study types classical and non-classical Class I and Class II HLA alleles from RNA-seq while simultaneously quantifying allele-specific or personalized HLA expression. The strategy also uses RNA-seq data to infer immune cell infiltration into tumors and the corresponding immune cell composition of matched normal tissue, to reveal potential insights related to T cell and NK cell interactions with tumor HLA alleles. RESULTS: The genotyping method outperforms existing RNA-seq-based HLA typing tools for Class II HLA genotyping. Further, we demonstrate its potential for studying tumor-immune interactions by applying the method to tumor samples from two different subtypes of breast cancer and their matched normal breast tissue controls. CONCLUSIONS: The integrative RNA-seq-based HLA typing approach described in the study, coupled with HLA expression analysis, neoantigen prediction and immune cell infiltration, may help increase our understanding of the interplay between a patient's tumor and immune system; and provide further insights into the immune mechanisms that determine a positive or negative outcome following treatment with immunotherapy such as checkpoint blockade.


Assuntos
Neoplasias da Mama , Antígenos de Histocompatibilidade Classe I , Humanos , Feminino , Genótipo , Neoplasias da Mama/genética , Imunidade , Teste de Histocompatibilidade/métodos , Antígenos HLA/genética
3.
Oncoimmunology ; 13(1): 2290900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125722

RESUMO

LTX-315 is an oncolytic peptide that elicits both local and systemic immune responses upon intratumoral injection. In the present pilot trial, we treated patients with metastatic soft tissue sarcoma with the combination of LTX-315 and adoptive T-cell therapy using in vitro expanded tumor-infiltrating lymphocytes. Six heavily pretreated patients were included in the trial and treated with LTX-315 of which four patients proceeded to adoptive T-cell therapy. Overall, the treatment was considered safe with only expected and manageable toxicity. The best overall clinical response was stable disease for 208 days, and in this patient, we detected tumor-reactive T cells in the blood that lasted until disease progression. In three patients T-cell reactivity against in silico predicted neoantigens was demonstrated. Additionally, de novo T-cell clones were generated and expanded in the blood following LTX-315 injections. In conclusion, this pilot study provides proof that it is feasible to combine LTX-315 and adoptive T-cell therapy, and that this treatment can induce systemic immune responses that resulted in stabilization of the disease in sarcoma patients with otherwise progressive disease. Further optimization of the treatment protocol is warranted to increase clinical activity. ClinicalTrials.gov Identifier: NCT03725605.


Assuntos
Segunda Neoplasia Primária , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral , Projetos Piloto , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia , Linfócitos T
5.
Oncoimmunology ; 13(1): 2371556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952674

RESUMO

Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Derrame Pleural Maligno , Receptores de Antígenos de Linfócitos T , Análise de Célula Única , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Derrame Pleural Maligno/imunologia , Derrame Pleural Maligno/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Antígenos de Neoplasias/imunologia
6.
Front Immunol ; 14: 1265044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045681

RESUMO

During the COVID-19 pandemic we utilized an AI-driven T cell epitope prediction tool, the NEC Immune Profiler (NIP) to scrutinize and predict regions of T cell immunogenicity (hotspots) from the entire SARS-CoV-2 viral proteome. These immunogenic regions offer potential for the development of universally protective T cell vaccine candidates. Here, we validated and characterized T cell responses to a set of minimal epitopes from these AI-identified universal hotspots. Utilizing a flow cytometry-based T cell activation-induced marker (AIM) assay, we identified 59 validated screening hits, of which 56% (33 peptides) have not been previously reported. Notably, we found that most of these novel epitopes were derived from the non-spike regions of SARS-CoV-2 (Orf1ab, Orf3a, and E). In addition, ex vivo stimulation with NIP-predicted peptides from the spike protein elicited CD8+ T cell response in PBMC isolated from most vaccinated donors. Our data confirm the predictive accuracy of AI platforms modelling bona fide immunogenicity and provide a novel framework for the evaluation of vaccine-induced T cell responses.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Epitopos de Linfócito T , Pandemias/prevenção & controle , Inteligência Artificial , Leucócitos Mononucleares , Peptídeos
7.
Front Immunol ; 14: 1226445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799721

RESUMO

Introduction: Sarcomas are comprised of diverse bone and connective tissue tumors with few effective therapeutic options for locally advanced unresectable and/or metastatic disease. Recent advances in immunotherapy, in particular immune checkpoint inhibition (ICI), have shown promising outcomes in several cancer indications. Unfortunately, ICI therapy has provided only modest clinical responses and seems moderately effective in a subset of the diverse subtypes. Methods: To explore the immune parameters governing ICI therapy resistance or immune escape, we performed whole exome sequencing (WES) on tumors and their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma patients treated with pembrolizumab. We used advanced computational methods to investigate key immune properties, such as neoantigens and immune cell composition in the tumor microenvironment (TME). Results: A multifactorial analysis suggested that expression of high quality neoantigens in the context of specific immune cells in the TME are key prognostic markers of progression-free survival (PFS). The presence of several types of immune cells, including T cells, B cells and macrophages, in the TME were associated with improved PFS. Importantly, we also found the presence of both CD8+ T cells and neoantigens together was associated with improved survival compared to the presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not identified with the combined presence of CD8+ T cells and TMB; suggesting that a combined CD8+ T cell and neoantigen effect on PFS was important. Discussion: The outcome of this study may inform future trials that may lead to improved outcomes for sarcoma patients treated with ICI.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Sarcoma/tratamento farmacológico , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , RNA-Seq , Microambiente Tumoral
8.
Front Immunol ; 14: 1210899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503339

RESUMO

Poor overall survival of hematopoietic stem cell transplantation (HSCT) recipients who developed COVID-19 underlies the importance of SARS-CoV-2 vaccination. Previous studies of vaccine efficacy have reported weak humoral responses but conflicting results on T cell immunity. Here, we have examined the relationship between humoral and T cell response in 48 HSCT recipients who received two doses of Moderna's mRNA-1273 or Pfizer/BioNTech's BNT162b2 vaccines. Nearly all HSCT patients had robust T cell immunity regardless of protective humoral responses, with 18/48 (37%, IQR 8.679-5601 BAU/mL) displaying protective IgG anti-receptor binding domain (RBD) levels (>2000 BAU/mL). Flow cytometry analysis of activation induced markers (AIMs) revealed that 90% and 74% of HSCT patients showed reactivity towards immunodominant spike peptides in CD8+ and CD4+ T cells, respectively. The response rate increased to 90% for CD4+ T cells as well when we challenged the cells with a complete set of overlapping peptides spanning the entire spike protein. T cell response was detectable as early as 3 months after transplant, but only CD4+ T cell reactivity correlated with IgG anti-RBD level and time after transplantation. Boosting increased seroconversion rate, while only one patient developed COVID-19 requiring hospitalization. Our data suggest that HSCT recipients with poor serological responses were protected from severe COVID-19 by vaccine-induced T cell responses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Vacina BNT162 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Estudos de Coortes , Vacinas contra COVID-19/imunologia , Imunoglobulina G , Estudos Prospectivos , SARS-CoV-2
9.
Front Immunol ; 14: 1235210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299149

RESUMO

People who use drugs (PWUD) are at a high risk of contracting and developing severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to their lifestyle, comorbidities, and the detrimental effects of opioids on cellular immunity. However, there is limited research on vaccine responses in PWUD, particularly regarding the role that T cells play in the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that before vaccination, PWUD did not exhibit an increased frequency of preexisting cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that opioids have on T-cell immunity, standard vaccination can elicit robust polyfunctional CD4+ and CD8+ T-cell responses that were similar to those found in controls. Our findings indicate that vaccination stimulates an effective immune response in PWUD and highlight targeted vaccination as an essential public health instrument for the control of COVID-19 and other infectious diseases in this group of high-risk patients.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2 , Vacinação , Analgésicos Opioides , RNA Mensageiro
10.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544663

RESUMO

BACKGROUND: CD8+tumor infiltrating lymphocytes (TILs) are often observed in non-small cell lung cancers (NSCLC). However, the characteristics of CD8+ TILs, especially T-cell populations specific for tumor antigens, remain poorly understood. METHODS: High throughput single-cell RNA sequencing and single-cell T-cell receptor (TCR) sequencing were performed on CD8+ TILs from three surgically-resected lung cancer specimens. Dimensional reduction for clustering was performed using Uniform Manifold Approximation and Projection. CD8+ TIL TCR specific for the cancer/testis antigen KK-LC-1 and for predicted neoantigens were investigated. Differentially-expressed gene analysis, Gene Set Enrichment Analysis (GSEA) and single sample GSEA was performed to characterize antigen-specific T cells. RESULTS: A total of 6998 CD8+ T cells was analyzed, divided into 10 clusters according to their gene expression profile. An exhausted T-cell (exhausted T (Tex)) cluster characterized by the expression of ENTPD1 (CD39), TOX, PDCD1 (PD1), HAVCR2 (TIM3) and other genes, and by T-cell oligoclonality, was identified. The Tex TCR repertoire (Tex-TCRs) contained nine different TCR clonotypes recognizing five tumor antigens including a KK-LC-1 antigen and four neoantigens. By re-clustering the tumor antigen-specific T cells (n=140), it could be seen that the individual T-cell clonotypes were present on cells at different stages of differentiation and functional states even within the same Tex cluster. Stimulating these T cells with predicted cognate peptide indicated that TCR signal strength and subsequent T-cell proliferation and cytokine production was variable but always higher for neoantigens than KK-LC-1. CONCLUSIONS: Our approach focusing on T cells with an exhausted phenotype among CD8+ TILs may facilitate the identification of tumor antigens and clarify the nature of the antigen-specific T cells to specify the promising immunotherapeutic targets in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA