Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 560(7718): 325-330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089904

RESUMO

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Evolução Molecular , Variação Genética/genética , Instabilidade Genômica/genética , Transcrição Gênica/genética , Neoplasias da Mama/patologia , Proliferação de Células , Forma Celular , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Variação Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Humanos , Células MCF-7 , Reprodutibilidade dos Testes
2.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542958

RESUMO

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Assuntos
PPAR gama , Neoplasias da Bexiga Urinária , Humanos , PPAR gama/agonistas , Agonismo Inverso de Drogas , Agonistas PPAR-gama , Regulação da Expressão Gênica
3.
Neuro Oncol ; 25(7): 1275-1285, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36694348

RESUMO

BACKGROUND: Glioblastoma is one of the most lethal forms of cancer, with 5-year survival rates of only 6%. Glioblastoma-targeted therapeutics have been challenging to develop due to significant inter- and intra-tumoral heterogeneity. Telomerase reverse transcriptase gene (TERT) promoter mutations are the most common known clonal oncogenic mutations in glioblastoma. Telomerase is therefore considered to be a promising therapeutic target against this tumor. However, an important limitation of this strategy is that cell death does not occur immediately after telomerase ablation, but rather after several cell divisions required to reach critically short telomeres. We, therefore, hypothesize that telomerase inhibition would only be effective in glioblastomas with low tumor burden. METHODS: We used CRISPR interference to knock down TERT expression in TERT promoter-mutant glioblastoma cell lines and patient-derived models. We then measured viability using serial proliferation assays. We also assessed for features of telomere crisis by measuring telomere length and chromatin bridge formation. Finally, we used a doxycycline-inducible CRISPR interference system to knock down TERT expression in vivo early and late in tumor development. RESULTS: Upon TERT inactivation, glioblastoma cells lose their proliferative ability over time and exhibit telomere shortening and chromatin bridge formation. In vivo, survival is only prolonged when TERT knockdown is induced shortly after tumor implantation, but not when the tumor burden is high. CONCLUSIONS: Our results support the idea that telomerase inhibition would be most effective at treating glioblastomas with low tumor burden, for example in the adjuvant setting after surgical debulking and chemoradiation.


Assuntos
Glioblastoma , Telomerase , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Telomerase/genética , Telomerase/metabolismo , Carga Tumoral , Mutação , Telômero/genética , Telômero/metabolismo , Telômero/patologia
4.
J Med Chem ; 65(21): 14843-14863, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36270630

RESUMO

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Assuntos
PPAR gama , PPAR gama/metabolismo , Ligantes
5.
Cell Rep ; 38(8): 110417, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196489

RESUMO

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais
6.
J Med Chem ; 64(15): 11129-11147, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34291633

RESUMO

Both previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6. From these hits, we developed potent (IC50 < 10 nM) analogues with selectivity against off-target kinases. Further optimization led to the discovery of an analogue (18) with an IC50 value of 6 nM against GRK6 and selectivity against a panel of 85 kinases. Compound 18 has potent cellular target engagement and antiproliferative activity against MM cells and is synergistic with bortezomib. In summary, we demonstrate that targeting GRK6 with small molecule inhibitors represents a promising approach for MM and identify 18 as a novel, potent, and selective GRK6 inhibitor.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
7.
Diabetes ; 56(3): 809-17, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17327452

RESUMO

We previously reported that interleukin (IL)-4 treatment of nonobese diabetic (NOD) mice elevates intrapancreatic CCL4 expression and protects from type 1 diabetes. Here, we show that antibody neutralization of CCL4 abrogates the ability of T-cells from IL-4-treated NOD mice to transfer protection against type 1 diabetes. Intradermal delivery of CCL4 via a plasmid vector stabilized by incorporation of the Epstein-Barr virus EBNA1/oriP episomal maintenance replicon (pHERO8100-CCL4) to NOD mice beginning at later stages of disease progression protects against type 1 diabetes. This protection was associated with a Th2-like response in the spleen and pancreas; decreased recruitment of activated CD8(+) T-cells to islets, accompanied by diminished CCR5 expression on CD8(+) T-cells; and regulatory T-cell activity in the draining pancreatic lymph nodes. Thus, inflammatory responses that target islet beta-cells are suppressed by CCL4, which implicates the use of CCL4 therapeutically to prevent type 1 diabetes.


Assuntos
Quimiocinas CC/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/prevenção & controle , Células Secretoras de Insulina/patologia , Envelhecimento , Animais , Quimiocina CCL4 , Quimiocinas CC/genética , Diabetes Mellitus Tipo 1/metabolismo , Terapia Genética , Inflamação/prevenção & controle , Interleucina-4/imunologia , Interleucina-4/farmacologia , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
9.
Nat Genet ; 50(7): 937-943, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29955178

RESUMO

Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-ß receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion.


Assuntos
Cromossomos Humanos Par 1 , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Éxons/genética , Feminino , Deleção de Genes , Células HEK293 , Humanos , Carioferinas/genética , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Splicing de RNA/genética , RNA Interferente Pequeno/genética
10.
Mol Cell Biol ; 23(22): 8042-57, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14585965

RESUMO

Stimulation of T cells through their antigen receptors (TCRs) causes a transient increase in the intracellular concentration of cyclic AMP (cAMP). However, sustained high levels of cAMP inhibit T-cell responses, suggesting that TCR signaling is coordinated with the activation of cyclic nucleotide phosphodiesterases (PDEs). The molecular basis of such a pathway is unknown. Here we show that TCR-dependent signaling activates PDE4B2 and that this enhances interleukin-2 production. Such an effect requires the regulatory N terminus of PDE4B2 and correlates with partitioning within lipid rafts, early targeting of this PDE to the immunological synapse, and subsequent accumulation in the antipodal pole of the T cell as activation proceeds.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , 3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/genética , Compartimento Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Ativação Enzimática , Humanos , Técnicas In Vitro , Interleucina-2/biossíntese , Células Jurkat , Ativação Linfocitária , Microdomínios da Membrana/enzimologia , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Transdução de Sinais
11.
Cancer Res ; 77(24): 6987-6998, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28923856

RESUMO

The PPARG gene encoding the nuclear receptor PPARγ is activated in bladder cancer, either directly by gene amplification or mutation, or indirectly by mutation of the RXRA gene, which encodes the heterodimeric partner of PPARγ. Here, we show that activating alterations of PPARG or RXRA lead to a specific gene expression signature in bladder cancers. Reducing PPARG activity, whether by pharmacologic inhibition or genetic ablation, inhibited proliferation of PPARG-activated bladder cancer cells. Our results offer a preclinical proof of concept for PPARG as a candidate therapeutic target in bladder cancer. Cancer Res; 77(24); 6987-98. ©2017 AACR.


Assuntos
Terapia de Alvo Molecular , PPAR gama/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Amplificação de Genes/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise em Microsséries , Mutação/fisiologia , Transcriptoma/fisiologia
13.
Cancer Res ; 62(1): 171-8, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11782375

RESUMO

The unique feature of human nasopharyngeal carcinoma (NPC) is its almost universal association with the EBV, which is expressed in a latent form exclusively in cancer cells, and not in the surrounding tissues. We have exploited this differential by constructing a novel replication-deficient adenovirus vector (ad5.oriP) in which transgene expression is under the transcriptional regulation of the family of repeats domain of the origin of replication (oriP) of EBV. When EBNA1, one of the latent gene products of EBV, binds to the family of repeats sequence, this activates transcription of downstream genes. Vector constructs were made using the beta-galactosidase and luciferase reporter genes (ad5oriP.betagal and ad5oriP.luc) or the p53 tumor suppressor gene (ad5oriP.p53). 5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining demonstrated extensive expression only in EBV-positive NPC cells, specifically in response to the presence of EBNA1. The relative difference in expression between EBV-positive and -negative cell lines is approximately 1000-fold. This selective expression was corroborated in EBV-positive and -negative tumor models, along with an absence of transgene expression in the host liver. Significant cytotoxicity was achieved using the adv.oriP.p53 therapeutic gene only in EBV-positive NPC cells, which was enhanced with the addition of ionizing radiation. Cytotoxicity was mediated primarily by induction of apoptosis. These results demonstrate that the oriP sequence can achieve high levels of gene expression targeted specifically to EBV-positive NPC cells in the context of the adv vector. This has now provided the tumor-specific expression system from which additional interventions can be evaluated in future treatment strategies for patients with nasopharyngeal cancers.


Assuntos
Terapia Genética/métodos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Apoptose/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Vetores Genéticos/genética , Herpesvirus Humano 4/genética , Humanos , Camundongos , Camundongos SCID , Neoplasias Nasofaríngeas/terapia , Origem de Replicação/genética , Transgenes , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
14.
J Med Chem ; 56(11): 4320-42, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23701517

RESUMO

Tankyrase (TNKS) is a poly-ADP-ribosylating protein (PARP) whose activity suppresses cellular axin protein levels and elevates ß-catenin concentrations, resulting in increased oncogene expression. The inhibition of tankyrase (TNKS1 and 2) may reduce the levels of ß-catenin-mediated transcription and inhibit tumorigenesis. Compound 1 is a previously described moderately potent tankyrase inhibitor that suffers from poor pharmacokinetic properties. Herein, we describe the utilization of structure-based design and molecular modeling toward novel, potent, and selective tankyrase inhibitors with improved pharmacokinetic properties (39, 40).


Assuntos
Benzimidazóis/síntese química , Oxazolidinonas/síntese química , Tanquirases/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Sítios de Ligação , Disponibilidade Biológica , Técnicas In Vitro , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Oxazolidinonas/farmacocinética , Oxazolidinonas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
15.
J Med Chem ; 56(24): 10003-15, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24294969

RESUMO

Tankyrases (TNKS1 and TNKS2) are proteins in the poly ADP-ribose polymerase (PARP) family. They have been shown to directly bind to axin proteins, which negatively regulate the Wnt pathway by promoting ß-catenin degradation. Inhibition of tankyrases may offer a novel approach to the treatment of APC-mutant colorectal cancer. Hit compound 8 was identified as an inhibitor of tankyrases through a combination of substructure searching of the Amgen compound collection based on a minimal binding pharmacophore hypothesis and high-throughput screening. Herein we report the structure- and property-based optimization of compound 8 leading to the identification of more potent and selective tankyrase inhibitors 22 and 49 with improved pharmacokinetic properties in rodents, which are well suited as tool compounds for further in vivo validation studies.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Tanquirases/antagonistas & inibidores , Administração Oral , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tanquirases/metabolismo
16.
Hum Gene Ther ; 21(8): 1005-17, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20615123

RESUMO

Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Vetores Genéticos , Lentivirus/genética , RNA Interferente Pequeno/metabolismo , Animais , Doxiciclina/metabolismo , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Marcação de Genes , Células HEK293 , Humanos , Lentivirus/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-myb/genética , RNA Interferente Pequeno/genética , Transfecção
17.
Apoptosis ; 12(8): 1465-78, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17440816

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) selectively induces apoptosis in transformed cells. Normal cells and certain tumor cells can evade Apo2L/TRAIL induced cell death, but the determinants of Apo2L/TRAIL sensitivity are poorly understood. To better understand the factors that contribute to Apo2L/TRAIL resistance, we characterized two colon carcinoma lines with pronounced differences in Apo2L/TRAIL sensitivity. Colo205 cells are highly sensitive to Apo2L/TRAIL whereas Colo320 cells are unresponsive. Components of the DISC (death inducing signaling complex) could be immunoprecipitated from both cell lines in response to Apo2L/TRAIL. Sensitizing agents including a proteasome inhibitor conferred Apo2L/TRAIL sensitivity in Colo320 cells, indicating that the apoptotic machinery was intact and functional. We specifically suppressed the expression of Bcl-2, FLIP or XIAP in Colo320 cells. Downregulation of either FLIP or XIAP but not Bcl-2 restored sensitivity of Colo320 cells to Apo2L/TRAIL. Moreover, stable knockdown of XIAP expression in Colo320 subcutaneous tumors resulted in suppression of tumor growth and sensitivity to Apo2L/TRAIL in vivo. Our results indicate that only a specific subset of anti-apoptotic proteins can confer resistance to Apo2L/TRAIL in Colo320 cells. Elucidation of the factors that contribute to Apo2L/TRAIL resistance in tumor cells may provide insight into combination therapies with Apo2L/TRAIL in a clinical setting.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma/genética , Neoplasias do Colo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Carcinoma/patologia , Neoplasias do Colo/patologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos SCID , Receptores de Morte Celular/metabolismo , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Blood ; 99(6): 2138-45, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11877290

RESUMO

We have characterized a splice variant (isoform) of the human CD28 T cell costimulatory receptor. The nucleotide sequence of this CD28 isoform was identical to that of CD28 in the signal peptide, the transmembrane domain, and the cytoplasmic tail, but it was missing a large segment of the extracellular ligand-binding domain, which is encoded by the second exon. This isoform (CD28i), whose message level exceeded 25% of CD28, was a transmembrane homodimer. CD28i was found noncovalently associated with CD28 and was tyrosine-phosphorylated/PI3-kinase-complexed following the crosslinking of CD28, and the CD28 costimulatory signal was enhanced in T cells expressing CD28i. These data demonstrate that CD28i, via noncovalent association with CD28, plays a role as a costimulatory signal amplifier in human T cells.


Assuntos
Processamento Alternativo/imunologia , Antígenos CD28/genética , Antígenos CD28/fisiologia , Transdução de Sinais , Linfócitos T/imunologia , Sequência de Bases , Sítios de Ligação , Antígenos CD28/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Deleção de Sequência , Ativação Transcricional
19.
Mol Ther ; 9(6): 804-17, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15194047

RESUMO

Successful attainment of tumor-specific gene expression was achieved in nasopharyngeal carcinoma (NPC) by exploiting the exclusive presence of the Epstein-Barr virus (EBV) genome in the cancer cells. In the current study, we have utilized an EBV-dependent transcriptional targeting strategy to construct a novel conditionally replicating adenovirus, adv.oriP.E1A. After treatment with adv.oriP.E1A, we observed extensive cell death in the EBV-positive NPC cell line C666-1. In contrast, no cytotoxicity was observed in a panel of other human EBV-negative cell lines, including fibroblasts from the nasopharynx. In vitro adenoviral replication was confirmed by the time-dependent increase in the expression of adenoviral capsid fiber protein and adenoviral DNA after C666-1 cells were infected with adv.oriP.E1A. Tumor formation was inhibited for more than 100 days after ex vivo infection of C666-1 cells with adv.oriP.E1A. Combination of local tumor radiation and adv.oriP.E1A caused complete disappearance of established tumors for at least 2 weeks in two distinct EBV-positive NPC xenograft models. Safety of this treatment was determined through the systemic delivery of adv.oriP.E1A in vivo, whereby minimal temporary perturbation of liver function was observed. We have successfully established a conditionally replicating adenovirus for EBV-positive NPC, which is both safe and efficacious, indicating a strategy that may be therapeutically applicable.


Assuntos
Adenoviridae/genética , Carcinoma/terapia , Terapia Genética/métodos , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/terapia , Replicação Viral/genética , Proteínas E1A de Adenovirus/genética , Animais , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Replicação do DNA , Humanos , Rim/patologia , Fígado/patologia , Camundongos , Camundongos SCID , Baço/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA