Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Bioinformatics ; 37(23): 4559-4561, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34623383

RESUMO

SUMMARY: A main task in computational cancer analysis is the identification of patient subgroups (i.e. cohorts) based on metadata attributes (patient stratification) or genomic markers of response (biomarkers). Coral is a web-based cohort analysis tool that is designed to support this task: Users can interactively create and refine cohorts, which can then be compared, characterized and inspected down to the level of single items. Coral visualizes the evolution of cohorts and also provides intuitive access to prevalence information. Furthermore, findings can be stored, shared and reproduced via the integrated session management. Coral is pre-loaded with data from over 128 000 samples from the AACR Project GENIE, the Cancer Genome Atlas and the Cell Line Encyclopedia. AVAILABILITY AND IMPLEMENTATION: Coral is publicly available at https://coral.caleydoapp.org. The source code is released at https://github.com/Caleydo/coral. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antozoários , Neoplasias , Animais , Genoma , Software , Internet
2.
Bioinformatics ; 35(17): 3140-3142, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657871

RESUMO

SUMMARY: Ordino is a web-based analysis tool for cancer genomics that allows users to flexibly rank, filter and explore genes, cell lines and tissue samples based on pre-loaded data, including The Cancer Genome Atlas, the Cancer Cell Line Encyclopedia and manually uploaded information. Interactive tabular data visualization that facilitates the user-driven prioritization process forms a core component of Ordino. Detail views of selected items complement the exploration. Findings can be stored, shared and reproduced via the integrated session management. AVAILABILITY AND IMPLEMENTATION: Ordino is publicly available at https://ordino.caleydoapp.org. The source code is released at https://github.com/Caleydo/ordino under the Mozilla Public License 2.0. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Neoplasias , Linhagem Celular Tumoral , Genoma , Humanos , Software
3.
BMC Bioinformatics ; 15 Suppl 6: S4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078951

RESUMO

BACKGROUND: Cluster analysis is widely used to discover patterns in multi-dimensional data. Clustered heatmaps are the standard technique for visualizing one-way and two-way clustering results. In clustered heatmaps, rows and/or columns are reordered, resulting in a representation that shows the clusters as contiguous blocks. However, for biclustering results, where clusters can overlap, it is not possible to reorder the matrix in this way without duplicating rows and/or columns. RESULTS: We present Furby, an interactive visualization technique for analyzing biclustering results. Our contribution is twofold. First, the technique provides an overview of a biclustering result, showing the actual data that forms the individual clusters together with the information which rows and columns they share. Second, for fuzzy clustering results, the proposed technique additionally enables analysts to interactively set the thresholds that transform the fuzzy (soft) clustering into hard clusters that can then be investigated using heatmaps or bar charts. Changes in the membership value thresholds are immediately reflected in the visualization. We demonstrate the value of Furby by loading biclustering results applied to a multi-tissue dataset into the visualization. CONCLUSIONS: The proposed tool allows analysts to assess the overall quality of a biclustering result. Based on this high-level overview, analysts can then interactively explore the individual biclusters in detail. This novel way of handling fuzzy clustering results also supports analysts in finding the optimal thresholds that lead to the best clusters.


Assuntos
Análise por Conglomerados , Biologia Computacional/instrumentação , Algoritmos , Mineração de Dados , Internet , Análise de Sequência com Séries de Oligonucleotídeos
4.
IEEE Trans Vis Comput Graph ; 30(1): 1216-1226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874710

RESUMO

In this work we propose Marjorie, a visual analytics approach to address the challenge of analyzing patients' diabetes data during brief regular appointments with their diabetologists. Designed in consultation with diabetologists, Marjorie uses a combination of visual and algorithmic methods to support the exploration of patterns in the data. Patterns of interest include seasonal variations of the glucose profiles, and non-periodic patterns such as fluctuations around mealtimes or periods of hypoglycemia (i.e., glucose levels below the normal range). We introduce a unique representation of glucose data based on modified horizon graphs and hierarchical clustering of adjacent carbohydrate or insulin entries. Semantic zooming allows the exploration of patterns on different levels of temporal detail. We evaluated our solution in a case study, which demonstrated Marjorie's potential to provide valuable insights into therapy parameters and unfavorable eating habits, among others. The study results and informal feedback collected from target users suggest that Marjorie effectively supports patients and diabetologists in the joint exploration of patterns in diabetes data, potentially enabling more informed treatment decisions. A free copy of this paper and all supplemental materials are available at https://osf.io/34t8c/.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Gráficos por Computador , Insulina , Glucose
5.
IEEE Trans Vis Comput Graph ; 30(1): 381-391, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878440

RESUMO

Many long-established, traditional manufacturing businesses are becoming more digital and data-driven to improve their production. These companies are embracing visual analytics in these transitions through their adoption of commercial dashboarding systems. Although a number of studies have looked at the technical challenges of adopting these systems, very few have focused on the socio-technical issues that arise. In this paper, we report on the results of an interview study with 17 participants working in a range of roles at a long-established, traditional manufacturing company as they adopted Microsoft Power BI. The results highlight a number of socio-technical challenges the employees faced, including difficulties in training, using and creating dashboards, and transitioning to a modern digital company. Based on these results, we propose a number of opportunities for both companies and visualization researchers to improve these difficult transitions, as well as opportunities for rethinking how we design dashboarding systems for real-world use.

6.
J Cheminform ; 16(1): 51, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730469

RESUMO

Chemical reaction optimization (RO) is an iterative process that results in large, high-dimensional datasets. Current tools allow for only limited analysis and understanding of parameter spaces, making it hard for scientists to review or follow changes throughout the process. With the recent emergence of using artificial intelligence (AI) models to aid RO, another level of complexity has been added. Helping to assess the quality of a model's prediction and understand its decision is critical to supporting human-AI collaboration and trust calibration. To address this, we propose CIME4R-an open-source interactive web application for analyzing RO data and AI predictions. CIME4R supports users in (i) comprehending a reaction parameter space, (ii) investigating how an RO process developed over iterations, (iii) identifying critical factors of a reaction, and (iv) understanding model predictions. This facilitates making informed decisions during the RO process and helps users to review a completed RO process, especially in AI-guided RO. CIME4R aids decision-making through the interaction between humans and AI by combining the strengths of expert experience and high computational precision. We developed and tested CIME4R with domain experts and verified its usefulness in three case studies. Using CIME4R the experts were able to produce valuable insights from past RO campaigns and to make informed decisions on which experiments to perform next. We believe that CIME4R is the beginning of an open-source community project with the potential to improve the workflow of scientists working in the reaction optimization domain. SCIENTIFIC CONTRIBUTION: To the best of our knowledge, CIME4R is the first open-source interactive web application tailored to the peculiar analysis requirements of reaction optimization (RO) campaigns. Due to the growing use of AI in RO, we developed CIME4R with a special focus on facilitating human-AI collaboration and understanding of AI models. We developed and evaluated CIME4R in collaboration with domain experts to verify its practical usefulness.

7.
BMC Bioinformatics ; 14 Suppl 19: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564375

RESUMO

Jointly analyzing biological pathway maps and experimental data is critical for understanding how biological processes work in different conditions and why different samples exhibit certain characteristics. This joint analysis, however, poses a significant challenge for visualization. Current techniques are either well suited to visualize large amounts of pathway node attributes, or to represent the topology of the pathway well, but do not accomplish both at the same time. To address this we introduce enRoute, a technique that enables analysts to specify a path of interest in a pathway, extract this path into a separate, linked view, and show detailed experimental data associated with the nodes of this extracted path right next to it. This juxtaposition of the extracted path and the experimental data allows analysts to simultaneously investigate large amounts of potentially heterogeneous data, thereby solving the problem of joint analysis of topology and node attributes. As this approach does not modify the layout of pathway maps, it is compatible with arbitrary graph layouts, including those of hand-crafted, image-based pathway maps. We demonstrate the technique in context of pathways from the KEGG and the Wikipathways databases. We apply experimental data from two public databases, the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) that both contain a wide variety of genomic datasets for a large number of samples. In addition, we make use of a smaller dataset of hepatocellular carcinoma and common xenograft models. To verify the utility of enRoute, domain experts conducted two case studies where they explore data from the CCLE and the hepatocellular carcinoma datasets in the context of relevant pathways.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Genômica/métodos , Bases de Dados Genéticas , Humanos , Redes e Vias Metabólicas , Neoplasias/genética
8.
Comput Graph Forum ; 42(3): 337-348, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505300

RESUMO

ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface for specifying these relations and transformations and for defining how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process. We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.

9.
IEEE Trans Vis Comput Graph ; 29(2): 1463-1477, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34633930

RESUMO

Spreadsheet-based tools provide a simple yet effective way of calculating values, which makes them the number-one choice for building and formalizing simple models for budget planning and many other applications. A cell in a spreadsheet holds one specific value and gives a discrete, overprecise view of the underlying model. Therefore, spreadsheets are of limited use when investigating the inherent uncertainties of such models and answering what-if questions. Existing extensions typically require a complex modeling process that cannot easily be embedded in a tabular layout. In Fuzzy Spreadsheet, a cell can hold and display a distribution of values. This integrated uncertainty-handling immediately conveys sensitivity and robustness information. The fuzzification of the cells enables calculations not only with precise values but also with distributions, and probabilities. We conservatively added and carefully crafted visuals to maintain the look and feel of a traditional spreadsheet while facilitating what-if analyses. Given a user-specified reference cell, Fuzzy Spreadsheet automatically extracts and visualizes contextually relevant information, such as impact, uncertainty, and degree of neighborhood, for the selected and related cells. To evaluate its usability and the perceived mental effort required, we conducted a user study. The results show that our approach outperforms traditional spreadsheets in terms of answer correctness, response time, and perceived mental effort in almost all tasks tested.

10.
IEEE Trans Vis Comput Graph ; 29(12): 4816-4831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34910635

RESUMO

Understanding user behavior patterns and visual analysis strategies is a long-standing challenge. Existing approaches rely largely on time-consuming manual processes such as interviews and the analysis of observational data. While it is technically possible to capture a history of user interactions and application states, it remains difficult to extract and describe analysis strategies based on interaction provenance. In this article, we propose a novel visual approach to the meta-analysis of interaction provenance. We capture single and multiple user sessions as graphs of high-dimensional application states. Our meta-analysis is based on two different types of two-dimensional embeddings of these high-dimensional states: layouts based on (i) topology and (ii) attribute similarity. We applied these visualization approaches to synthetic and real user provenance data captured in two user studies. From our visualizations, we were able to extract patterns for data types and analytical reasoning strategies.

11.
IEEE Trans Vis Comput Graph ; 29(7): 3312-3326, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35254984

RESUMO

In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups are accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.

12.
14.
J Cheminform ; 14(1): 21, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379315

RESUMO

The introduction of machine learning to small molecule research- an inherently multidisciplinary field in which chemists and data scientists combine their expertise and collaborate - has been vital to making screening processes more efficient. In recent years, numerous models that predict pharmacokinetic properties or bioactivity have been published, and these are used on a daily basis by chemists to make decisions and prioritize ideas. The emerging field of explainable artificial intelligence is opening up new possibilities for understanding the reasoning that underlies a model. In small molecule research, this means relating contributions of substructures of compounds to their predicted properties, which in turn also allows the areas of the compounds that have the greatest influence on the outcome to be identified. However, there is no interactive visualization tool that facilitates such interdisciplinary collaborations towards interpretability of machine learning models for small molecules. To fill this gap, we present CIME (ChemInformatics Model Explorer), an interactive web-based system that allows users to inspect chemical data sets, visualize model explanations, compare interpretability techniques, and explore subgroups of compounds. The tool is model-agnostic and can be run on a server or a workstation.

15.
IEEE Trans Vis Comput Graph ; 28(2): 1222-1236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32746284

RESUMO

Classifiers are among the most widely used supervised machine learning algorithms. Many classification models exist, and choosing the right one for a given task is difficult. During model selection and debugging, data scientists need to assess classifiers' performances, evaluate their learning behavior over time, and compare different models. Typically, this analysis is based on single-number performance measures such as accuracy. A more detailed evaluation of classifiers is possible by inspecting class errors. The confusion matrix is an established way for visualizing these class errors, but it was not designed with temporal or comparative analysis in mind. More generally, established performance analysis systems do not allow a combined temporal and comparative analysis of class-level information. To address this issue, we propose ConfusionFlow, an interactive, comparative visualization tool that combines the benefits of class confusion matrices with the visualization of performance characteristics over time. ConfusionFlow is model-agnostic and can be used to compare performances for different model types, model architectures, and/or training and test datasets. We demonstrate the usefulness of ConfusionFlow in a case study on instance selection strategies in active learning. We further assess the scalability of ConfusionFlow and present a use case in the context of neural network pruning.

17.
Bioinformatics ; 25(20): 2760-1, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19620095

RESUMO

UNLABELLED: Understanding the relationships between pathways and the altered expression of their components in disease conditions can be addressed in a visual data analysis process. Caleydo uses novel visualization techniques to support life science experts in their analysis of gene expression data in the context of pathways and functions of individual genes. Pathways and gene expression visualizations are placed in a 3D scene where selected entities (i.e. genes) are visually connected. This allows Caleydo to seamlessly integrate interactive gene expression visualization with cross-database pathway exploration. AVAILABILITY: The Caleydo visualization framework is freely available on www.caleydo.org for non-commercial use. It runs on Windows and Linux and requires a 3D capable graphics card.


Assuntos
Biologia Computacional/métodos , Expressão Gênica , Software , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Interface Usuário-Computador
18.
IEEE Trans Vis Comput Graph ; 16(6): 1027-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975140

RESUMO

When analyzing multidimensional, quantitative data, the comparison of two or more groups of dimensions is a common task. Typical sources of such data are experiments in biology, physics or engineering, which are conducted in different configurations and use replicates to ensure statistically significant results. One common way to analyze this data is to filter it using statistical methods and then run clustering algorithms to group similar values. The clustering results can be visualized using heat maps, which show differences between groups as changes in color. However, in cases where groups of dimensions have an a priori meaning, it is not desirable to cluster all dimensions combined, since a clustering algorithm can fragment continuous blocks of records. Furthermore, identifying relevant elements in heat maps becomes more difficult as the number of dimensions increases. To aid in such situations, we have developed Matchmaker, a visualization technique that allows researchers to arbitrarily arrange and compare multiple groups of dimensions at the same time. We create separate groups of dimensions which can be clustered individually, and place them in an arrangement of heat maps reminiscent of parallel coordinates. To identify relations, we render bundled curves and ribbons between related records in different groups. We then allow interactive drill-downs using enlarged detail views of the data, which enable in-depth comparisons of clusters between groups. To reduce visual clutter, we minimize crossings between the views. This paper concludes with two case studies. The first demonstrates the value of our technique for the comparison of clustering algorithms. In the second, biologists use our system to investigate why certain strains of mice develop liver disease while others remain healthy, informally showing the efficacy of our system when analyzing multidimensional data containing distinct groups of dimensions.

19.
Comput Graph Forum ; 39(6): 269-288, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041406

RESUMO

Guidance is an emerging topic in the field of visual analytics. Guidance can support users in pursuing their analytical goals more efficiently and help in making the analysis successful. However, it is not clear how guidance approaches should be designed and what specific factors should be considered for effective support. In this paper, we approach this problem from the perspective of guidance designers. We present a framework comprising requirements and a set of specific phases designers should go through when designing guidance for visual analytics. We relate this process with a set of quality criteria we aim to support with our framework, that are necessary for obtaining a suitable and effective guidance solution. To demonstrate the practical usability of our methodology, we apply our framework to the design of guidance in three analysis scenarios and a design walk-through session. Moreover, we list the emerging challenges and report how the framework can be used to design guidance solutions that mitigate these issues.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30188828

RESUMO

Analyzing large, multivariate graphs is an important problem in many domains, yet such graphs are challenging to visualize. In this paper, we introduce a novel, scalable, tree+table multivariate graph visualization technique, which makes many tasks related to multivariate graph analysis easier to achieve. The core principle we follow is to selectively query for nodes or subgraphs of interest and visualize these subgraphs as a spanning tree of the graph. The tree is laid out linearly, which enables us to juxtapose the nodes with a table visualization where diverse attributes can be shown. We also use this table as an adjacency matrix, so that the resulting technique is a hybrid node-link/adjacency matrix technique. We implement this concept in Juniper and complement it with a set of interaction techniques that enable analysts to dynamically grow, restructure, and aggregate the tree, as well as change the layout or show paths between nodes. We demonstrate the utility of our tool in usage scenarios for different multivariate networks: a bipartite network of scholars, papers, and citation metrics and a multitype network of story characters, places, books, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA