Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life (Basel) ; 13(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36836803

RESUMO

Polymeric micelles combining the advantages of biocompatible poly- and oligosaccharides with classical micellar amphiphilic systems represent a promising class of drug carriers. In this work, micelles based on chitosan (or cyclodextrin) and oleic acid with various modification degrees were synthesized-the most optimal grafting degree is 15-30% in terms of CMC. According to NTA data, micelles have a hydrodynamic diameter of the main fraction of 60-100 nm. The inclusion of the antibacterial agents: moxifloxacin or rifampicin in micelles was studied by FTIR spectroscopy and fluorescence spectroscopy using a pyrene label (using monomer-excimer approach). When aromatic molecules are incorporated into micelles, the absorption bands of C-H bonds of the fatty tails of micelles shift towards smaller wavenumbers, indicating a stabilization of the micelles structure, and the microenvironment of the drug molecule changes according to the low frequencies shift and intensity changes in oscillation frequencies of 1450 cm-1 corresponding to aromatic fragment. Loading of moxifloxacin and rifampicin into micelles leads to a change in the fluorescent properties: a shift of the maximum of fluorescence emission to the long-wavelength region and an increase in the fluorescence anisotropy due to a drastic increase in the hydrodynamic volume of the fluorophore-containing rotating fragment. Using the pyrene label, the critical micelle concentrations were determined: from 4 to 30 nM depending on the polymer composition. Micellar systems enhance the effect of the antibiotic by increasing the penetration into bacterial cells and storing the drug in a protective coat. As a part of the supramolecular structure, the antibiotic remains active for more than four days, while in free form, the activity decreases after two days. In pharmacokinetic experiments, in vivo moxifloxacin in micellar systems show 1.7 times more efficiency compared to free form; moreover, two times higher maximal concentration in the blood is achieved. The advantage of polymer micellar systems in comparison with simple cyclodextrins and chitosan, which do not so significantly contribute to the antibacterial and pharmacokinetic parameters, was shown. Thus, polymeric micelles are one of the key approaches to improving the effectiveness of antibacterial drugs and solving the problems of resistant bacterial infections and multidrug resistance.

2.
Pharmaceutics ; 15(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37111621

RESUMO

The main factors that determine the low effectiveness of chemotherapy are the low target bioavailability of antitumor drugs and the efflux process. In attempts to overcome this problem, several approaches are proposed here. Firstly, the development of polymeric micellar systems based on chitosan grafted by fatty acids (different types to optimize their properties), which, on the one hand, increase the solubility and bioavailability of cytostatics and, on the other hand, effectively interact with tumor cells due to the polycationic properties of chitosan, allowing for more effective penetration of cytostatic drugs into the cells. Secondly, the use of adjuvants-synergists of cytostatics (such as eugenol) included in the same micellar formulation-that selectively enhance the accumulation and retention of cytostatics in the tumor cells. pH- and temperature-sensitive polymeric micelles developed show high entrapment efficiency for both cytostatics and eugenol (EG) >60% and release the drug in a prolonged manner for 40 h in a weakly acidic medium corresponding to the microenvironment of tumors. In a slightly alkaline environment, the drug circulates longer (more than 60 h). The thermal sensitivity of micelles is realized due to an increase in the molecular mobility of chitosan, which undergoes a phase transition at 32-37 °C. The effect of the cytostatic drug doxorubicin (Dox) on cancerous A549 cells and model healthy cells of human embryonic renal epithelium (HEK293T) was studied by FTIR spectroscopy and fluorescence microscopy. Micellar Dox penetrates into cancer cells 2-3 times more efficiently when using EG adjuvant, which inhibits efflux, as demonstrated by a significant increase in the ratio of intra- and extracellular concentrations of the cytostatic. However, here it is worth remembering about healthy cells that they should not be damaged: according to changes in the FTIR and fluorescence spectra, the penetration of Dox into HEK293T when using micelles in combination with EG is reduced by 20-30% compared to a simple cytostatic. Thus, experimental developments of combined micellar cytostatic drugs have been proposed to increase the effectiveness of cancer treatment and overcome multiple drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA