Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neurobiol Dis ; 106: 205-213, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28709992

RESUMO

Low-voltage fast (LVF) and hypersynchronous (HYP) - onset seizures occur in the EEG obtained with depth electrodes from mesial temporal lobe epilepsy (MTLE) patients and animal models. In epileptic rats analyzed up to approximately two weeks after pilocarpine-induced status epilepticus (SE), these patterns are associated with specific high-frequency oscillation (HFO) content: ripples (80-200Hz) or fast-ripples (250-500Hz) predominate in LVF or HYP seizures, respectively. To establish whether these features change over the course of the disease, we recorded the EEG from the hippocampal CA3 subfield, subiculum, entorhinal cortex and dentate gyrus in two groups of pilocarpine-treated rats: the "early stage group" (n=8) was analyzed from day 3 to 20 post-SE while the "late stage group" (n=7) was studied from day 27 to 53 post-SE. We found that: (i) HYP and LVF seizures prevail in the early and late stage group, respectively; (ii) HYP seizures mainly originate from CA3 in the early stage group only; (iii) LVF seizures in both early and late stage group originate from a diffuse network; (iv) LVF and HYP seizures in the early stage group are mainly associated with ripples and fast ripples, respectively; but (v) fast ripples predominate in the late stage group, regardless of seizure onset pattern. Finally, extensive neuronal loss occurred in the hippocampus of the late stage group. Our results reveal that significant changes in ictogenesis and HFO occurrence, which are associated with the manifestation of severe hippocampal damage, occur over time in this MTLE model.


Assuntos
Córtex Entorrinal/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Convulsões/fisiopatologia , Animais , Ondas Encefálicas , Modelos Animais de Doenças , Progressão da Doença , Eletrocorticografia , Córtex Entorrinal/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Masculino , Pilocarpina , Ratos Sprague-Dawley , Convulsões/patologia , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Fatores de Tempo
2.
Neuroimage ; 118: 397-405, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004502

RESUMO

The myelin g-ratio, defined as the ratio between the inner and the outer diameter of the myelin sheath, is a fundamental property of white matter that can be computed from a simple formula relating the myelin volume fraction to the fiber volume fraction or the axon volume fraction. In this paper, a unique combination of magnetization transfer, diffusion imaging and histology is presented, providing a novel method for in vivo magnetic resonance imaging of the axon volume fraction and the myelin g-ratio. Our method was demonstrated in the corpus callosum of one cynomolgus macaque, and applied to obtain full-brain g-ratio maps in one healthy human subject and one multiple sclerosis patient. In the macaque, the g-ratio was relatively constant across the corpus callosum, as measured by both MRI and electron microscopy. In the human subjects, the g-ratio in multiple sclerosis lesions was higher than in normal appearing white matter, which was in turn higher than in healthy white matter. Measuring the g-ratio brings us one step closer to fully characterizing white matter non-invasively, making it possible to perform in vivo histology of the human brain during development, aging, disease and treatment.


Assuntos
Axônios/ultraestrutura , Encéfalo/ultraestrutura , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina/ultraestrutura , Adulto , Animais , Corpo Caloso/ultraestrutura , Humanos , Macaca fascicularis , Fenômenos Magnéticos , Masculino , Camundongos Mutantes Neurológicos , Esclerose Múltipla/patologia
3.
FASEB J ; 27(9): 3741-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756650

RESUMO

Management of painful peripheral neuropathies remains challenging, since patients with chronic pain respond poorly to the available pharmacopeia. In recent years, the G-protein-coupled receptor neurotensin (NT) type 2 (NTS2) emerged as an attractive target for treating transitory pain states. To date, however, there is no evidence for its role in the regulation of chronic peripheral neuropathies. Here, we found that NTS2 receptors were largely localized to primary afferent fibers and superficial dorsal horns. Changes in the time course of the gene expression profile of NT, NTS1, and NTS2 were observed over a 28-d period following the sciatic nerve constriction [chronic constriction injury (CCI) model]. We next determined the effects of central delivery of selective-NTS2 agonists to CCI-treated rats on both mechanical allodynia (evoked withdrawal responses) and weight-bearing deficits (discomfort and quality-of-life proxies). The NTS2 analogs JMV431, levocabastine, and ß-lactotensin were all effective in reducing ongoing tactile allodynia in CCI-treated rats. Likewise, amitriptyline, pregabalin, and morphine significantly attenuated CCI-induced mechanical hypersensitivity. NTS2 agonists were also efficient in reversing weight-bearing and postural deficits caused by nerve damage, unlike reference analgesics currently used in the clinic. Thus, NTS2 agonists may offer new treatment avenues for limiting pain associated with peripheral neuropathies and improve functional rehabilitation and well-being.


Assuntos
Neuralgia/tratamento farmacológico , Receptores de Neurotensina/metabolismo , Analgésicos/uso terapêutico , Animais , Western Blotting , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Neuralgia/induzido quimicamente , Oligopeptídeos/uso terapêutico , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores de Neurotensina/agonistas , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
4.
J Neurosci ; 31(23): 8381-94, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21653843

RESUMO

Netrins are guidance cues involved in neural connectivity. We have shown that the netrin-1 receptor DCC (deleted in colorectal cancer) is involved in the functional organization of the mesocorticolimbic dopamine (DA) system. Adult mice with a heterozygous loss-of-function mutation in dcc exhibit changes in indexes of DA function, including DA-related behaviors. These phenotypes are only observed after puberty, a critical period in the maturation of the mesocortical DA projection. Here, we examined whether dcc heterozygous mice exhibit structural changes in medial prefrontal cortex (mPFC) DA synaptic connectivity, before and after puberty. Stereological counts of tyrosine-hydroxylase (TH)-positive varicosities were increased in the cingulate 1 and prelimbic regions of the pregenual mPFC. dcc heterozygous mice also exhibited alterations in the size, complexity, and dendritic spine density of mPFC layer V pyramidal neuron basilar dendritic arbors. Remarkably, these presynaptic and postsynaptic partner phenotypes were not observed in juvenile mice, suggesting that DCC selectively influences the extensive branching and synaptic differentiation that occurs in the maturing mPFC DA circuit at puberty. Immunolabeling experiments in wild-type mice demonstrated that DCC is segregated to TH-positive fibers innervating the nucleus accumbens, with only scarce DCC labeling in mPFC TH-positive fibers. Netrin had an inverted target expression pattern. Thus, DCC-mediated netrin-1 signaling may influence the formation/maintenance of mesocorticolimbic DA topography. In support of this, we report that dcc heterozygous mice exhibit a twofold increase in the density of mPFC DCC/TH-positive varicosities. Our results implicate DCC-mediated netrin-1 signaling in the establishment of mPFC DA circuitry during puberty.


Assuntos
Dopamina/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Análise de Variância , Animais , Contagem de Células , Receptor DCC , Espinhas Dendríticas/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Sinapses/metabolismo , Proteínas Supressoras de Tumor/genética , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Eur J Neurosci ; 36(10): 3388-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22925106

RESUMO

Somatostatin (SST) is a neuropeptide with known inhibitory actions in the hypothalamus, where it inhibits release of growth hormone-releasing hormone (GHRH), while also influencing the sleep-wake cycle. Here we investigated in the rat whether SST neurons might additionally release GABA (gamma-aminobutyric acid) or glutamate in different regions and whether they might contact orexin neurons that play an important role in the maintenance of wakefulness. In dual-immunostained sections viewed by epifluorescence microscopy, we examined if SST varicosities were immunopositive for the vesicular transporter for GABA (VGAT) or glutamate (VGLUT2) in the posterolateral hypothalamus and neighboring arcuate nucleus and median eminence. Of the SST varicosities in the posterolateral hypothalamus, 18% were immunopositive for VGAT, whereas ≤ 1% were immunopositive for VGLUT2. In the arcuate and median eminence, 26 and 64% were VGAT+ and < 3% VGLUT2 + , respectively. In triple-immunostained sections viewed by epifluorescence and confocal microscopy, SST varicosities were seen in contact with orexin somata, and of these varicosities, a significant proportion (23%) contained VGAT along with synaptophysin, the presynaptic marker for small synaptic vesicles, and a similar proportion (25%) abutted puncta that were immunostained for gephyrin, the postsynaptic marker for GABAergic synapses. Our results indicate that a significant proportion of SST varicosities in the hypothalamus have the capacity to release GABA, to form inhibitory synapses upon orexin neurons, and accordingly through their peptide and/or amino acid, to inhibit orexin neurons, as well as GHRH neurons. Thus while regulating GHRH release, SST neurons could serve to attenuate arousal and permit progression through the sleep cycle.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/análise , Hipotálamo/química , Peptídeos e Proteínas de Sinalização Intracelular/análise , Neurônios/química , Neuropeptídeos/análise , Somatostatina/análise , Sistema X-AG de Transporte de Aminoácidos/análise , Animais , Masculino , Orexinas , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/química
6.
Methods Mol Biol ; 2440: 253-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218544

RESUMO

Stimulated emission depletion (STED) microscopy is one of the optical superresolution microscopy (SRM) techniques, more recently also referred to as nanoscopy, that have risen to popularity among biologists during the past decade. These techniques keep pushing the physical boundaries of optical resolution toward the molecular scale. Thereby, they enable biologists to image cellular and tissue structures at a level of almost molecular detail that was previously only achievable using electron microscopy. All the while, they retain the advantages of light microscopy, in particular with regards to sample preparation and flexibility of imaging. Commercially available SRM setups have become more and more available and also increasingly sophisticated, both in terms of optical performance and, importantly, ease of use. Institutional microscopy core facilities now offer widespread access to this type of systems. However, the field has grown so rapidly, and keeps growing, that biologists can be easily overwhelmed by the multitude of available techniques and approaches. From this vast array of SRM modalities, STED stands out in one respect: it is essentially an extension to an advanced confocal microscope. Most experienced users of confocal microscopy will find the transition to STED microscopy relatively easy as compared with some other SRM techniques. This also applies to STED sample preparation. Nonetheless, because resolution in STED microscopy does not only depend on the wavelength of the incident light and the numerical aperture of the objective, but crucially also on the square root of the intensity of the depletion laser and, in general, on the photochemical interaction of the fluorophore with the depletion laser, some additional considerations are necessary in STED sample preparation. Here we describe the single color staining of the somatostatin receptor subtype 2A (SSTR2A) and dual color staining of the trans-Golgi-network protein TGN 38 and the t-SNARE syntaxin-6 for STED in the endocrine cell line AtT20 and STED imaging of the samples, providing the protocols in as general a form as possible. The protocols in this chapter are used in this way in an institutional microscopy core facility.


Assuntos
Corantes Fluorescentes , Lasers , Microscopia Confocal , Microscopia de Fluorescência/métodos
7.
Nat Cell Biol ; 23(12): 1271-1286, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34873283

RESUMO

Mitochondrial-derived vesicles (MDVs) are implicated in diverse physiological processes-for example, mitochondrial quality control-and are linked to various neurodegenerative diseases. However, their specific cargo composition and complex molecular biogenesis are still unknown. Here we report the proteome and lipidome of steady-state TOMM20+ MDVs. We identified 107 high-confidence MDV cargoes, which include all ß-barrel proteins and the TOM import complex. MDV cargoes are delivered as fully assembled complexes to lysosomes, thus representing a selective mitochondrial quality control mechanism for multi-subunit complexes, including the TOM machinery. Moreover, we define key biogenesis steps of phosphatidic acid-enriched MDVs starting with the MIRO1/2-dependent formation of thin membrane protrusions pulled along microtubule filaments, followed by MID49/MID51/MFF-dependent recruitment of the dynamin family GTPase DRP1 and finally DRP1-dependent scission. In summary, we define the function of MDVs in mitochondrial quality control and present a mechanistic model for global GTPase-driven MDV biogenesis.


Assuntos
Vesículas Citoplasmáticas/fisiologia , Dinaminas/metabolismo , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Lipidômica , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Doenças Neurodegenerativas/patologia , Fatores de Alongamento de Peptídeos/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteoma/genética , Interferência de RNA , RNA Interferente Pequeno/genética
8.
J Chem Neuroanat ; 111: 101881, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160048

RESUMO

Serotonin (5-HT) is a common neurotransmitter in mammals, playing a central role in the regulation of various processes such as sleep, perception, cognitive and autonomic functions in the nervous system. Previous studies have demonstrated that 5-HT type 3 (5-HT3) receptors are expressed in either or both the substantia nigra (SN) and the dorsal raphe nucleus (DRN) in humans, marmosets, rats and Syrian hamsters. Here, we quantify the distribution of 5-HT3 receptors across these regions in the adult rat. Fluorescent immunohistochemistry was performed on sections of rat brain covering the entire rostro-caudal extent of the SN and DRN with antibodies specific to the 5-HT3A receptor subunit, as well as others targeting the monoaminergic markers tyrosine hydroxylase (TH) and the 5-HT transporter (SERT). The number of 5-HT3A receptor-positive, TH-positive (n = 28,428 ±â€¯888, Gundersen's m = 1 coefficient of error [CE] = 0.05) and SERT-positive (n = 12,852 ±â€¯462, CE = 0.06) cells were estimated in both the SN and the DRN using stereology. We found that 5-HT3A receptor-positive cells are present in the SNr (n = 1250 ±â€¯64, CE = 0.24), but they did not co-localise with TH-positive cells, nor were they present in the SNc. In contrast, no 5-HT3A receptor-positive cells were found in the DRN. These results support the presence of 5-HT3 receptors in the SN, but not in the DRN, and do not support their expression on monoaminergic cells within these two brain areas.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Neurônios/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Substância Negra/metabolismo , Animais , Feminino , Masculino , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
J Neurosci ; 29(25): 8198-205, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19553459

RESUMO

Growth hormone (GH) secretion in male rats exhibits a 3.3 h ultradian rhythm generated by the reciprocal interaction of GH-releasing hormone (GHRH) and somatostatin (SRIF). SRIF receptor subtypes sst(1) and sst(2) are highly expressed in GHRH neurons of the hypothalamic arcuate nucleus (ARC). We previously demonstrated an ultradian oscillation in binding of SRIF analogs to the ARC in relation to GH peaks and troughs. Here we tested the hypothesis that these ultradian changes in SRIF binding are due to differential plasma membrane targeting of sst(1) receptors in ARC neurons using immunocytochemistry and electron microscopy. We found that 87% of sst(1)-positive ARC neurons also synthesized GHRH. Subcellularly, 80% of sst(1) receptors were located intracellularly and 20% at the plasma membrane regardless of GH status. However, whereas 30% of the cell-surface sst(1) receptors were located perisynaptically or subsynaptically following exposure to high GH secretion, this fraction was increased to 42% following a GH trough period (p = 0.05). Furthermore, the relative abundance of symmetric and asymmetric synapses on sst(1)-positive dendrites also varied significantly, depending on the GH cycle, from approximately equal numbers following GH troughs to 70:30 in favor of symmetric, i.e., inhibitory, inputs after GH peaks (p < 0.02). These findings suggest that postsynaptic localization of sst(1) receptors and synaptic connectivity in the ARC undergo pronounced remodeling in parallel with the GH rhythm. Such synaptic plasticity may be an important mechanism by which sst(1) mediates SRIF's cyclical effects on ARC GHRH neurons to generate the ultradian rhythm of GH secretion.


Assuntos
Ciclos de Atividade/fisiologia , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Hormônio do Crescimento/sangue , Hormônio do Crescimento/sangue , Neurônios/metabolismo , Receptores de Somatostatina/metabolismo , Sinapses/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/ultraestrutura , Imunofluorescência , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Neurônios/ultraestrutura , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Somatostatina/sangue , Sinapses/ultraestrutura
10.
Endocrine ; 69(3): 655-669, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32383089

RESUMO

BACKGROUND: Somatostatin (SOM) receptor subtype 2 (SSTR2) is the major receptor subtype mediating SOM effects throughout the neuraxis. We previously demonstrated that the non-selective agonist [D-Trp8]-SOM induces intracellular sequestration of SSTR2, whereas this receptor is maintained at the cell surface after treatment with the SSTR2-selective agonist L-779,976 in cells co-expressing SSTR2 and SSTR5. METHODS AND RESULTS: In this study, we knocked-out SSTR5 in AtT20 cells endogenously expressing both SSTR2 and SSTR5 and used immuno-labeling and confocal microscopy to investigate the effect of SSTR5 on regulation of SSTR2 trafficking. Our results indicate that unlike [D-Trp8]-SOM-induced intracellular sequestration, L-779,976 stimulation results in the maintenance of SSTR2 at the cell surface regardless of whether SSTR5 is present or not. We then examined the trafficking pathways of SSTR2 upon stimulation by either agonist. We found that both [D-Trp8]-SOM and L-779,976 induce SSTR2 internalization via transferrin-positive vesicles. However, SSTR2 internalized upon L-779,976 treatment undergoes rapid recycling to the plasma membrane, whereas receptors internalized by [D-Trp8]-SOM recycle slowly after washout of the agonist. Furthermore, [D-Trp8]-SOM stimulation induces degradation of a fraction of internalized SSTR2 whereas L-779,976-dependent, rapid SSTR2 recycling appears to protect internalized SSTR2 from degradation. In addition, Octreotide which has preferential SSTR2 affinity, induced differential effects on both SSTR2 trafficking and degradation. CONCLUSION: Our results indicate that the biased agonistic property of L-779,976 protects against SSTR2 surface depletion by rapidly initiating SSTR2 recycling while SSTR5 does not regulate L-779-976-dependent SSTR2 trafficking.


Assuntos
Células Neuroendócrinas , Receptores de Somatostatina , Octreotida , Receptores de Somatostatina/genética , Somatostatina
11.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825461

RESUMO

The surfacing of the glucose transporter GLUT4 driven by insulin receptor activation provides the prototypic example of a homeostasis response dependent on mobilization of an intracellular storage compartment. Here, we generalize this concept to a G protein-coupled receptor, somatostatin receptor subtype 2 (SSTR2), in pituitary cells. Following internalization in corticotropes, SSTR2 moves to a juxtanuclear syntaxin-6-positive compartment, where it remains until the corticotropes are stimulated with corticotropin releasing factor (CRF), whereupon SSTR2 exits the compartment on syntaxin-6-positive vesicular/tubular carriers that depend on Rab10 for their fusion with the plasma membrane. As SSTR2 activation antagonizes CRF-mediated hormone release, this storage/resurfacing mechanism may allow for a physiological homeostatic feedback system. In fact, we find that SSTR2 moves from an intracellular compartment to the cell surface in pituitary gland somatotropes, concomitant with increasing levels of serum growth hormone (GH) during natural GH cycles. Our data thus provide a mechanism by which signaling-mediated plasma membrane resurfacing of SSTR2 can fine-tune pituitary hormone release.


Assuntos
Corticotrofos/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hipófise/metabolismo , Proteínas Qa-SNARE/metabolismo , Receptores de Somatostatina/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Hormônio Liberador da Corticotropina , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipófise/citologia , Proteínas Qa-SNARE/genética , Receptores de Somatostatina/genética , Transdução de Sinais
12.
Front Neural Circuits ; 14: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523515

RESUMO

Neuroendocrine circuits are orchestrated by the pituitary gland in response to hypothalamic hormone-releasing and inhibiting factors to generate an ultradian and/or circadian rhythm of hormone secretion. However, mechanisms that govern this rhythmicity are not fully understood. It has been shown that synaptic transmission in the rodent hypothalamus undergoes cyclical changes in parallel with rhythmic hormone secretion and a growing body of evidence suggests that rapid rewiring of hypothalamic neurons may be the source of these changes. For decades, structural synaptic studies have been utilizing electron microscopy, which provides the resolution suitable for visualizing synapses. However, the small field of view, limited specificity and manual analysis susceptible to bias fuel the search for a more quantitative approach. Here, we apply the fluorescence super-resolution microscopy approach direct Stochastic Optical Reconstruction Microscopy (dSTORM) to quantify and structurally characterize excitatory and inhibitory synapses that contact growth hormone-releasing-hormone (GHRH) neurons during peak and trough values of growth hormone (GH) concentration in mice. This approach relies on a three-color immunofluorescence staining of GHRH and pre- and post-synaptic markers, and a quantitative analysis with a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. With this method we confirm our previous findings, using electron microscopy, of increased excitatory synaptic input to GHRH neurons during peak levels of GH. Additionally, we find a shift in synapse numbers during low GH levels, where more inhibitory synaptic inputs are detected. Lastly, we utilize dSTORM to study novel aspects of synaptic structure. We show that more excitatory (but not inhibitory) pre-synaptic clusters associate with excitatory post-synaptic clusters during peaks of GH secretion and that the numbers of post-synaptic clusters increase during high hormone levels. The results presented here provide an opportunity to highlight dSTORM as a valuable quantitative approach to study synaptic structure in the neuroendocrine circuit. Importantly, our analysis of GH circuitry sheds light on the potential mechanism that drives ultradian changes in synaptic transmission and possibly aids in GH pulse generation in mice.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/metabolismo , Microscopia/métodos , Sinapses/metabolismo , Ritmo Ultradiano/fisiologia , Animais , Hormônio do Crescimento/análise , Hormônio Liberador de Hormônio do Crescimento/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/química
13.
J Neurochem ; 107(2): 398-417, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18691385

RESUMO

The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.


Assuntos
Axônios/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Fatores de Crescimento Neural/efeitos dos fármacos , Neurônios/ultraestrutura , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Animais , Axônios/fisiologia , Axônios/efeitos da radiação , Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Receptor DCC , Estimulação Elétrica/métodos , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Camundongos , Netrina-1 , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Cloreto de Potássio/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Receptor trkB/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
14.
J Neurosci ; 26(3): 953-62, 2006 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-16421315

RESUMO

The present study demonstrates that perikaryaldelta-opioid receptors (deltaORs) in rat dorsal root ganglion (DRG) neurons bind and internalize opioid ligands circulating in the CSF. Using confocal and electron microscopy, we found that prolonged morphine treatment increased the cell surface density of these perikaryal deltaORs and, by way of consequence, receptor-mediated internalization of the fluorescent deltorphin (DLT) analog omega-Bodipy 576/589 deltorphin-I 5-aminopentylamide (Fluo-DLT) in all three types of DRG neurons (small, medium, and large). In contrast, chronic inflammatory pain induced by the injection of complete Freund's adjuvant (CFA) into one hindpaw selectively increased Fluo-DLT internalization in small and medium-sized DRG neurons ipsilateral to the inflammation. Based on our previous studies in the spinal cord of mu-opioid receptor (muOR) knock-out mice, it may be assumed that the enhanced membrane recruitment of deltaORs observed after sustained morphine is attributable to stimulation of muORs. However, the selectivity of the effect induced by inflammatory pain suggests that it involves a different mechanism, namely a modality-specific and pain-related activation of C and Adelta fibers. Indeed, stimulation by capsaicin of transient receptor potential vanilloid 1 receptors, which are selectively expressed by small diameter (< 600 microm2) DRG neurons, increased Fluo-DLT internalization exclusively in this cell population. The present results, therefore, demonstrate that DRG neurons express perikaryal deltaORs accessible to CSF-circulating ligands and that the density and, hence, presumably also the responsiveness, of these receptors may be modulated by both pain-related stimuli and sustained exposure to muOR agonists.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Receptores Opioides delta/análise , Receptores Opioides delta/biossíntese , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Masculino , Morfina/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/fisiologia
15.
Endocrinology ; 148(5): 2095-105, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17272399

RESUMO

The somatostatin [somatotropin release-inhibiting factor (SRIF)] receptor subtypes sst(2A) and sst(5) are frequently coexpressed in SRIF-responsive cells, including endocrine pituitary cells. We previously demonstrated that sst(2A) and sst(5) exhibit different subcellular localizations and regulation of cell surface expression, although they have similar signaling properties. We investigated here whether sst(2A) and sst(5) functionally interact in cells coexpressing the two receptor subtypes. We stimulated both transfected cells stably expressing sst(2A) alone (CHO-sst(2A)) or together with sst(5) (CHO-sst(2A+5)) and the pituitary cell line AtT20, which endogenously expresses the two receptor subtypes, with either the nonselective agonist [D-Trp(8)]-SRIF-14 or the sst(2)-selective agonist L-779,976. In CHO-sst(2A) cells, stimulation with either ligand resulted in the loss of approximately 75% of cell surface SRIF binding sites and massive internalization of sst(2A) receptors. The cells were desensitized to subsequent stimulation with [D-Trp(8)]-SRIF-14, which failed to inhibit forskolin-evoked cAMP accumulation. Similarly, in CHO-sst(2A+5) and AtT20 cells, [D-Trp(8)]-SRIF-14 induced the loss of 60-70% of SRIF binding sites as well as massive sst(2A) endocytosis. By contrast, in cells expressing both sst(2A) and sst(5), selective stimulation of sst(2A) with L-779,976 resulted in only 20-40% loss of cell surface binding and markedly reduced sst(2A) internalization. Consequently, whereas CHO-sst(2A+5) and AtT20 cells stimulated with [D-Trp(8)]-SRIF-14 were desensitized to a second stimulation with the same agonist, cells prestimulated with L-779,976 were not desensitized to subsequent [D-Trp(8)]-SRIF-14 stimulation. These findings indicate that the presence of sst(5) in the same cells modulates trafficking and cell surface regulation of sst(2A) and cellular desensitization to the effects of SRIF.


Assuntos
Endocitose/fisiologia , Transporte Proteico/fisiologia , Receptores de Somatostatina/metabolismo , Amidas/metabolismo , Amidas/farmacologia , Animais , Células CHO , Colforsina/farmacologia , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Radioisótopos do Iodo , Camundongos , Ensaio Radioligante , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/genética , Transdução de Sinais/fisiologia , Somatostatina/análogos & derivados , Somatostatina/metabolismo , Somatostatina/farmacologia , Transfecção
16.
J Neurosci ; 25(36): 8188-96, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16148226

RESUMO

Intrathecal administration of the neuropeptide neurotensin (NT) was shown previously to exert antinociceptive effects in a variety of acute spinal pain paradigms including hotplate, tail-flick, and writhing tests. In the present study, we sought to determine whether some of these antinociceptive effects might be elicited via stimulation of low-affinity NTS2 receptors. We first established, using immunoblotting and immunohistochemical techniques, that NTS2 receptors were extensively associated with putative spinal nociceptive pathways, both at the level of the dorsal root ganglia and of the superficial layers of the dorsal horn of the spinal cord. We then examined the effects of intrathecal administration of NT or selective NTS2 agonists on acute thermal pain. Both NT and NTS2 agonists, levocabastine and Boc-Arg-Arg-Pro-Tyrpsi(CH2NH)Ile-Leu-OH (JMV-431), induced dose-dependent antinociceptive responses in the tail-flick test. The effects of levocabastine and of JMV-431 were unaffected by coadministration of the NTS1-specific antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1.1.(3.7))-decan-2-carboxylic acid (SR48692), confirming that they were NTS2 mediated. In contrast, the antinociceptive effects of NT were partly abolished by coadministration of SR48692, indicating that NTS1 and NTS2 receptors were both involved. These results suggest that NTS2 receptors play a role in the regulation of spinal nociceptive inputs and that selective NTS2 agonists may offer new avenues for the treatment of acute pain.


Assuntos
Analgésicos/farmacologia , Gânglios Espinais/fisiologia , Receptores de Neurotensina/fisiologia , Medula Espinal/fisiologia , Analgésicos/administração & dosagem , Animais , Gânglios Espinais/efeitos dos fármacos , Temperatura Alta , Técnicas In Vitro , Injeções Espinhais , Vértebras Lombares , Modelos Animais , Neurotensina/farmacologia , Dor , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Neurotensina/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Cauda
17.
Cell Metab ; 23(5): 797-810, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166944

RESUMO

While leptin is a well-known regulator of body fat mass, it remains unclear how circulating leptin is sensed centrally to maintain energy homeostasis. Here we show that genetic and pharmacological ablation of adult NG2-glia (also known as oligodendrocyte precursors), but not microglia, leads to primary leptin resistance and obesity in mice. We reveal that NG2-glia contact the dendritic processes of arcuate nucleus leptin receptor (LepR) neurons in the median eminence (ME) and that these processes degenerate upon NG2-glia elimination, which explains the consequential attenuation of these neurons' molecular and electrical responses to leptin. Our data therefore indicate that LepR dendrites in the ME represent the principal conduits of leptin's anorexigenic action and that NG2-glia are essential for their maintenance. Given that ME-directed X-irradiation confirmed the pharmacological and genetically mediated ablation effects on body weight, our findings provide a rationale for the known obesity risk associated with cranial radiation therapy.


Assuntos
Leptina/metabolismo , Eminência Mediana/metabolismo , Neuroglia/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Anorexia/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citarabina/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Deleção de Genes , Masculino , Eminência Mediana/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mitose/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/patologia , Fenótipo , Receptores para Leptina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
18.
J Neurosci ; 24(24): 5549-59, 2004 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15201327

RESUMO

An in vivo fluorescent deltorphin (Fluo-DLT) internalization assay was used to assess the distribution and regulation of pharmacologically available delta opioid receptors (deltaORs) in the rat lumbar (L4-5) spinal cord. Under basal conditions, intrathecal injection of Fluo-DLT resulted in the labeling of numerous deltaOR-internalizing neurons throughout dorsal and ventral horns. The distribution and number of Fluo-DLT-labeled perikaryal profiles were consistent with that of deltaOR-expressing neurons, as revealed by in situ hybridization and immunohistochemistry, suggesting that a large proportion of these cells was responsive to intrathecally administered deltaOR agonists. Pretreatment of rats with morphine for 48 hr resulted in a selective increase in Fluo-DLT-labeled perikaryal profiles within the dorsal horn. These changes were not accompanied by corresponding augmentations in either deltaOR mRNA or (125)I-deltorphin-II binding levels, suggesting that they were attributable to higher densities of cell surface deltaOR available for internalization rather than to enhanced production of the receptor. Unilateral dorsal rhizotomy also resulted in increased Fluo-DLT internalization in the ipsilateral dorsal horn when compared with the side contralateral to the deafferentation or to non-deafferented controls, suggesting that deltaOR trafficking in dorsal horn neurons may be regulated by afferent inputs. Furthermore, morphine treatment no longer increased Fluo-DLT internalization on either side of the spinal cord after unilateral dorsal rhizotomy, indicating that microOR-induced changes in the cell surface availability of deltaOR depend on the integrity of primary afferent inputs. Together, these results suggest that regulation of deltaOR responsiveness through microOR activation in this region is linked to somatosensory information processing.


Assuntos
Morfina/farmacologia , Entorpecentes/farmacologia , Receptores Opioides delta/metabolismo , Medula Espinal/metabolismo , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hibridização In Situ , Região Lombossacral , Masculino , Microscopia de Fluorescência , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Células do Corno Posterior/metabolismo , Transporte Proteico , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides delta/biossíntese , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Rizotomia , Medula Espinal/anatomia & histologia , Regulação para Cima
19.
J Mol Neurosci ; 25(3): 207-14, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15800374

RESUMO

In recent years, we demonstrated that prolonged (48-h) treatment of rats or mice with selective m-opioid receptor ((mu)OR) agonists induced a translocation of delta-opioid receptors ((delta)ORs) from intracellular compartments to neuronal plasma membranes in the dorsal horn of the spinal cord. It remained to be determined whether this phenomenon also occurred in the brain. To resolve this issue, we analyzed by immunogold histochemistry the subcellular distribution of (delta)ORs in the nucleus accumbens, dorsal neostriatum, and frontal cortex in mice treated or not with morphine (48 h). We observed that prolonged treatment with morphine induced a translocation of (delta)ORs from intracellular to subplasmalemmal and membrane compartments in dendrites from both the nucleus accumbens and the dorsal neostriatum but not from the frontal cortex. We propose that this (mu)OR-(delta)OR interaction might prolong and modulate the sensitivity of neurons to opiates in specific target regions.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Neostriado/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Feminino , Lobo Frontal/citologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neostriado/citologia , Neostriado/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Transporte Proteico/efeitos dos fármacos
20.
Brain Res Dev Brain Res ; 156(2): 111-26, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16099299

RESUMO

The effects of brain-derived neurotrophic factor (BDNF) on the development of presynaptic terminals and of neuronal subtypes in various brain areas were studied in BDNF-knockout (BDNF-/-) mice at postnatal days 15-17. Western analysis revealed no changes in the overall amount of a variety of synaptic proteins in BDNF-/- mice as compared to wild type mice. In addition, the complex between the vesicular proteins, synaptophysin and synaptobrevin, as well as their respective homodimers were unaltered. Moreover, no changes in the density of neurons were found in, e.g., the CA3 region of the hippocampus and the nucleus nervi facialis of BDNF-/- mice. However, cholinergic cells were reduced by 20% in the medial septum of BDNF-/- mice associated with a decrease in the activity of choline acetyltransferase and protein levels of nerve growth factor in the hippocampus by 16% and 44%, respectively. In the striatum, however, the total number of cholinergic cells were comparable in both groups, although the activity of choline acetyltransferase was decreased by 46%. In GABAergic interneurons, the expression of neuropeptides in various brain areas was differentially affected by BDNF deletion as revealed by immunohistochemistry. In the hippocampus and cortex of BDNF-/- mice, the density of neuropeptide Y-, somatostatin-, and parvalbumin-immunoreactive cells was drastically reduced, whereas the density of calretinin-positive cells was increased. The extent of these changes in neuropeptide-containing cells varied among hippocampal subregions. In the striatum, only the density of parvalbumin-immunoreactive cells was decreased by approximately 45%. In conclusion, BDNF deficiency is accompanied by a differential dysregulation in the expression of neuropeptides and calcium-binding proteins in otherwise intact GABAergic and glutamatergic neurons in a region-specific manner.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Encéfalo/citologia , Encéfalo/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Encéfalo/crescimento & desenvolvimento , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Calbindina 2 , Contagem de Células/métodos , Colina O-Acetiltransferase/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Neurônios/citologia , Neuropeptídeo Y/metabolismo , Parvalbuminas/metabolismo , Proteínas R-SNARE , Proteína G de Ligação ao Cálcio S100/metabolismo , Somatostatina/metabolismo , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA