RESUMO
The use of malolactic starter cultures, often offer no guarantee of microbiological success due to the chemical and physical factors (pH, ethanol, SO2, nutrient availability) that occur during the winemaking process. This study was born with the aim of improving the performance of the lactic acid bacteria used as a starter culture in the de-acidification of wines. Two commercial strains of Oenococcus oeni, were used. Was evaluated the effect of exogenous l-proline added during the bacterial growth, on the improvement of their survival in the presence of different ethanol concentrations and their ability to degrade l-malic acid in synthetic wine with the presence of 12% (v/v) and 13% (v/v) of ethanol. The results showed that l-proline improve ethanol tolerance and so the malolactic performances of O. oeni. This work represents an important strategy to ensure good vitality and improve the performance of the malolactic starter.
RESUMO
Reaching a sufficient yeast assimilable nitrogen (YAN) content in berries at harvest is considered a main viticultural goal for wine-making, because low YANs can slow down must fermentation and have negative effects on wine sensory attributes. For this reason, many attempts have been made to define correct fertilization strategies to stimulate YAN accumulation in the berries. Foliar application of amino acid-enriched urea fertilizer is considered a promising environmentally friendly strategy for improving the yield and nutrient efficiency of plants. The aim of this two-year research was to study the effects of two fertilizers based on urea enriched with amino acids applied at low doses in diverse phenological stages on berry YAN concentration in 'Greco' grapevines. The results of this study indicate that amino acid-enriched urea fertilizers induced an increase in YANs in the 'Greco' berries at harvest, but only when the application was undertaken at full veraison. Foliar applications applied at veraison onset or post-veraison appeared to be ineffective. In addition, the fertilizers enhanced YAN accumulation in the berry without modifying the other composition parameters measured in this study (total soluble solids, titratable acidity, pH and malic acid). Therefore, the results of our study suggest that foliar application of urea fertilizers enriched with amino acids is an effective strategy to increase yeast-assimilable nitrogen concentration in grapevine berries at harvest.
RESUMO
Malolactic fermentation (MLF) is a biological process that, in addition to deacidifying, also improves biological stability and changes the chemical and sensorial characteristics of wines. However, multiple biotic and abiotic factors, present in must and wine, make the onset and completion of MLF by indigenous malolactic bacteria or added commercial starters difficult. This work illustrates the metabolic and fermentative dynamics in winemaking Fiano wine, using a commercial starter of Saccharomyces cerevisiae and the selected strain Lactobacillus plantarum M10. In particular, an inoculum of malolactic starter was assessed at the beginning of alcoholic fermentation (early co-inoculum), at half alcoholic fermentation (late co-inoculum), and post alcoholic fermentation (sequential inoculum). The malolactic starter, before its use, was pre-adapted in sub-optimal growth conditions (pH 5.0). In sequential inoculum of the Lb. plantarum M10, even in a wine with high acidity, has confirmed its good technological and enzymatic characteristics, completing the MLF and enriching the wine with desirable volatile compounds.
RESUMO
In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 µg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 µg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.
Assuntos
Antocianinas/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Vinho/análise , Antocianinas/química , Antioxidantes/administração & dosagem , Antioxidantes/análise , Cloraminas/química , Cloraminas/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Oxirredução , Polifenóis/química , Polifenóis/metabolismo , Quercetina/química , Quercetina/metabolismoRESUMO
The concentrations of trans-resveratrol, (+)-catechin, (-)-epicatechin, and quercetin were evaluated by means of high-performance liquid chromatography-diode array detection in red wines obtained from Aglianico, Piedirosso, and Nerello Mascalese grapes. The trans-resveratrol and epicatechin concentrations did not differ significantly between experimental wines. The concentration of quercetin in Nerello Mascalese wines was more than twice that observed in Aglianico and Piedirosso wines. Nerello Mascalese wines also significantly differed from other wines in the (+)-catechin content, which was significantly higher than those found in the other two wines. During maceration, the maximum extraction of trans-resveratrol was reached after 12 days for Aglianico and Piedirosso, after which a decline was observed. On the contrary, in the case of Nerello Mascalese, the concentration of trans-resveratrol increased steadily throughout the whole maceration process. After 2 days of maceration, the maximum concentration of quercetin was observed in Aglianico must, whereas the maximum quercetin extraction was reached after 12 days for Piedirosso and 17 days for Nerello Mascalese. The maximum levels of (+)-catechin and (-)-epicatechin were generally observed after 12 days of maceration for all wines, although a decline of (-)-epicatechin occurred after maximum extraction in Aglianico and Piedirosso wines. Following marc pressing, a significant increase in the concentration of trans-resveratrol for Aglianico, (+)-catechin and (-)-epicatechin for Piedirosso, and (-)-epicatechin for Nerello Mascalese was observed.