Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 594(7861): 100-105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981041

RESUMO

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Assuntos
Envelhecimento/imunologia , Envelhecimento/fisiologia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Imunossenescência/imunologia , Imunossenescência/fisiologia , Especificidade de Órgãos/imunologia , Especificidade de Órgãos/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Dano ao DNA/imunologia , Dano ao DNA/fisiologia , Reparo do DNA/imunologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Homeostase/imunologia , Homeostase/fisiologia , Sistema Imunitário/efeitos dos fármacos , Imunossenescência/efeitos dos fármacos , Masculino , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Rejuvenescimento , Sirolimo/farmacologia , Baço/citologia , Baço/transplante
2.
Arterioscler Thromb Vasc Biol ; 44(7): 1646-1657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695172

RESUMO

BACKGROUND: Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS: To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS: AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS: Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Células Espumosas , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores Imunológicos , Animais , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Células Espumosas/metabolismo , Células Espumosas/patologia , Células Espumosas/efeitos dos fármacos , Masculino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica , Sobrevivência Celular/efeitos dos fármacos , Necrose , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/prevenção & controle
3.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36472588

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores CXCR3 , Neoplasias Pancreáticas
4.
J Immunol ; 206(6): 1372-1384, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558374

RESUMO

Pancreatic cancer is a particularly lethal malignancy that resists immunotherapy. In this study, using a preclinical pancreatic cancer murine model, we demonstrate a progressive decrease in IFN-γ and granzyme B and a concomitant increase in Tox and IL-10 in intratumoral tumor-specific T cells. Intratumoral myeloid cells produced elevated IL-27, a cytokine that correlates with poor patient outcome. Abrogating IL-27 signaling significantly decreased intratumoral Tox+ T cells and delayed tumor growth yet was not curative. Agonistic αCD40 decreased intratumoral IL-27-producing myeloid cells, decreased IL-10-producing intratumoral T cells, and promoted intratumoral Klrg1+Gzmb+ short-lived effector T cells. Combination agonistic αCD40+αPD-L1 cured 63% of tumor-bearing animals, promoted rejection following tumor rechallenge, and correlated with a 2-log increase in pancreas-residing tumor-specific T cells. Interfering with Ifngr1 expression in nontumor/host cells abrogated agonistic αCD40+αPD-L1 efficacy. In contrast, interfering with nontumor/host cell Tnfrsf1a led to cure in 100% of animals following agonistic αCD40+αPD-L1 and promoted the formation of circulating central memory T cells rather than long-lived effector T cells. In summary, we identify a mechanistic basis for T cell exhaustion in pancreatic cancer and a feasible clinical strategy to overcome it.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interleucinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Células Tumorais Cultivadas/transplante , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
6.
Immunol Rev ; 257(1): 145-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24329795

RESUMO

Adoptive T-cell therapy involves the isolation, expansion, and reinfusion of T lymphocytes with a defined specificity and function as a means to eradicate cancer. Our research has focused on specifying the requirements for tumor eradication with antigen-specific T cells and T cells transduced to express a defined T-cell receptor (TCR) in mouse models and then translating these strategies to clinical trials. Our design of T-cell-based therapy for cancer has reflected efforts to identify the obstacles that limit sustained effector T-cell activity in mice and humans, design approaches to enhance T-cell persistence, develop methods to increase TCR affinity/T-cell functional avidity, and pursue strategies to overcome tolerance and immunosuppression. With the advent of genetic engineering, a highly functional population of T cells can now be rapidly generated and tailored for the targeted malignancy. Preclinical studies in faithful and informative mouse models, in concert with knowledge gained from analyses of successes and limitations in clinical trials, are shaping how we continue to develop, refine, and broaden the applicability of this approach for cancer therapy.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Técnicas de Cultura de Células , Epitopos de Linfócito T/imunologia , Engenharia Genética , Terapia Genética , Vetores Genéticos , Humanos , Tolerância Imunológica , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Pesquisa Translacional Biomédica , Evasão Tumoral/imunologia
7.
J Immunol ; 192(3): 929-39, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24367024

RESUMO

The efficacy of rituximab treatment in multiple sclerosis has renewed interest in the role of B cells in CNS autoimmunity. In this study, we show that B cells are the predominant MHC class II(+) subset in the naive CNS in mice, and they constitutively express proinflammatory cytokines. Incidence of experimental autoimmune encephalomyelitis induced by adoptive transfer was significantly reduced in C3HeB/Fej µMT (B cell-deficient) mice, suggesting an important role for CNS B cells in initiating inflammatory responses. Initial T cell infiltration of the CNS occurred normally in µMT mice; however, lack of production of T cell cytokines and other immune mediators indicated impaired T cell reactivation. Subsequent recruitment of immune cells from the periphery driven by this initial T cell reactivation did not occur in µMT mice. B cells required exogenous IL-1ß to reactivate Th17 but not Th1 cells in vitro. Similarly, reactivation of Th1 cells infiltrating the CNS was selectively impaired compared with Th17 cells in µMT mice, causing an increased Th17/Th1 ratio in the CNS at experimental autoimmune encephalomyelitis onset and enhanced brain inflammation. These studies reveal an important role for B cells within the CNS in reactivating T cells and influencing the clinical manifestation of disease.


Assuntos
Subpopulações de Linfócitos B/imunologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva , Sequência de Aminoácidos , Animais , Subpopulações de Linfócitos B/patologia , Células Cultivadas , Sistema Nervoso Central/patologia , Quimiotaxia de Leucócito , Citocinas/biossíntese , Citocinas/genética , Citocinas/fisiologia , Regulação da Expressão Gênica/imunologia , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Organismos Livres de Patógenos Específicos , Baço/imunologia , Baço/patologia , Subpopulações de Linfócitos T/patologia , Células Th1/imunologia , Células Th17/imunologia
8.
Blood ; 122(3): 348-56, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23673862

RESUMO

Many of the most promising tumor antigens for T-cell-based cancer immunotherapies are unmodified self-antigens. Unfortunately, the avidity of T cells specific for these antigens is limited by central tolerance during T-cell development in the thymus, resulting in decreased anti-tumor efficacy of these T cells. One approach to overcoming this obstacle is to mutate T-cell receptor (TCR) genes from naturally occurring T cells to enhance the affinity for the target antigen. These enhanced-affinity TCRs can then be developed for use in TCR gene therapy. Although TCRs with significantly enhanced affinity have been generated using this approach, it is not clear whether these TCRs, which bypass the affinity limits imposed by negative selection, remain unresponsive to the low levels of self-antigen generally expressed by some normal tissues. Here we show that 2 variants of a high-affinity WT1-specific TCR with enhanced affinity for WT1 are safe and do not mediate autoimmune tissue infiltration or damage when transduced into peripheral CD8 T cells and transferred in vivo. However, if expressed in developing T cells and subjected to thymic selection, the same enhanced-affinity TCRs signal tolerance mechanisms in the thymus, resulting in T cells with attenuated antigen sensitivity in the periphery.


Assuntos
Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Terapia Genética , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Animais , Humanos , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/imunologia , Linfócitos T/imunologia , Transdução Genética
9.
Gut ; 63(11): 1769-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24555999

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is characterised by a robust desmoplasia, including the notable accumulation of immunosuppressive cells that shield neoplastic cells from immune detection. Immune evasion may be further enhanced if the malignant cells fail to express high levels of antigens that are sufficiently immunogenic to engender an effector T cell response. OBJECTIVE: To investigate the predominant subsets of immunosuppressive cancer-conditioned myeloid cells that chronicle and shape the progression of pancreas cancer. We show that selective depletion of one subset of myeloid-derived suppressor cells (MDSC) in an autochthonous, genetically engineered mouse model (GEMM) of PDA unmasks the ability of the adaptive immune response to engage and target tumour epithelial cells. METHODS: A combination of in vivo and in vitro studies were performed employing a GEMM that faithfully recapitulates the cardinal features of human PDA. The predominant cancer-conditioned myeloid cell subpopulation was specifically targeted in vivo and the biological outcomes determined. RESULTS: PDA orchestrates the induction of distinct subsets of cancer-associated myeloid cells through the production of factors known to influence myelopoiesis. These immature myeloid cells inhibit the proliferation and induce apoptosis of activated T cells. Targeted depletion of granulocytic MDSC (Gr-MDSC) in autochthonous PDA increases the intratumoral accumulation of activated CD8 T cells and apoptosis of tumour epithelial cells and also remodels the tumour stroma. CONCLUSIONS: Neoplastic ductal cells of the pancreas induce distinct myeloid cell subsets that promote tumour cell survival and accumulation. Targeted depletion of a single myeloid subset, the Gr-MDSC, can unmask an endogenous T cell response, disclosing an unexpected latent immunity and invoking targeting of Gr-MDSC as a potential strategy to exploit for treating this highly lethal disease.


Assuntos
Imunidade Adaptativa , Carcinoma Ductal Pancreático/imunologia , Células Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Progressão da Doença , Engenharia Genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Técnicas In Vitro , Camundongos , Células Mieloides/patologia , Mielopoese/imunologia , Neoplasias Pancreáticas/patologia , Baço/imunologia
10.
Carcinogenesis ; 35(7): 1451-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908682

RESUMO

Pancreatic ductal adenocarcinoma co-opts multiple cellular and extracellular mechanisms to create a complex cancer organ with an unusual proclivity for metastasis and resistance to therapy. Cell-autonomous events are essential for the initiation and maintenance of pancreatic ductal adenocarcinoma, but recent studies have implicated critical non-cell autonomous processes within the robust desmoplastic stroma that promote disease pathogenesis and resistance. Thus, non-malignant cells and associated factors are culprits in tumor growth, immunosuppression and invasion. However, even this increasing awareness of non-cell autonomous contributions to disease progression is tempered by the conflicting roles stromal elements can play. A greater understanding of stromal complexity and complicity has been aided in part by studies in highly faithful genetically engineered mouse models of pancreatic ductal adenocarcinoma. Insights gleaned from such studies are spurring the development of therapies designed to reengineer the pancreas cancer stroma and render it permissive to agents targeting cell-autonomous events or to reinstate immunosurveillance. Integrating conventional and immunological treatments in the context of stromal targeting may provide the key to a durable clinical impact on this formidable disease.


Assuntos
Matriz Extracelular/patologia , Neoplasias Pancreáticas/patologia , Células Estromais/patologia , Engenharia Tecidual , Animais , Humanos , Camundongos
11.
J Immunol ; 189(4): 1812-25, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22798667

RESUMO

T cell expression of inhibitory proteins can be a critical component for the regulation of immunopathology owing to self-reactivity or potentially exuberant responses to pathogens, but it may also limit T cell responses to some malignancies, particularly if the tumor Ag being targeted is a self-protein. We found that the abrogation of Src homology region 2 domain-containing phosphatase-1 (SHP-1) in tumor-reactive CD8(+) T cells improves the therapeutic outcome of adoptive immunotherapy in a mouse model of disseminated leukemia, with benefit observed in therapy employing transfer of CD8(+) T cells alone or in the context of also providing supplemental IL-2. SHP-1(-/-) and SHP-1(+/+) effector T cells were expanded in vitro for immunotherapy. Following transfer in vivo, the SHP-1(-/-) effector T cells exhibited enhanced short-term accumulation, followed by greater contraction, and they ultimately formed similar numbers of long-lived, functional memory cells. The increased therapeutic effectiveness of SHP-1(-/-) effector cells was also observed in recipients that expressed the tumor Ag as a self-antigen in the liver, without evidence of inducing autoimmune toxicity. SHP-1(-/-) effector CD8(+) T cells expressed higher levels of eomesodermin, which correlated with enhanced lysis of tumor cells. Furthermore, reduction of SHP-1 expression in tumor-reactive effector T cells by retroviral transduction with vectors that express SHP-1-specific small interfering RNA, a translatable strategy, also exhibited enhanced antitumor activity in vivo. These studies suggest that abrogating SHP-1 in effector T cells may improve the efficacy of tumor elimination by T cell therapy without affecting the ability of the effector cells to persist and provide a long-term response.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Linfócitos T/transplante , Animais , Antígenos de Neoplasias/imunologia , Modelos Animais de Doenças , Leucemia/imunologia , Leucemia/terapia , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
12.
Cancer Immunol Res ; : OF1-OF2, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967231

RESUMO

Sex differences in cancer survivorship and response to immunotherapy have been observed, with males generally displaying better outcomes to immune checkpoint blockade compared with females. In this article, by interrogating public lung cancer sequencing datasets, Brennan and colleagues uncover a chemokine axis that may contribute to disparate immunotherapy outcomes between the sexes. See related article by Brennan et al., p. XXX (3).

13.
Cancer Immunol Res ; 11(4): 400, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897261

RESUMO

Chronic inflammation and immune evasion are hallmarks of cancer. Cancer promotes T-cell differentiation toward an exhausted, or dysfunctional state, which contributes to immune evasion. In this issue, Lutz and colleagues show that the proinflammatory cytokine IL18 correlates with poor patient prognosis and promotes CD8+ T-cell exhaustion in pancreatic cancer by enhancing IL2R signaling. This link between proinflammatory cytokines and T-cell exhaustion elucidates consequences of modulating cytokine signaling during cancer immunotherapy. See related article by Lutz et al. p. 421 (1) .


Assuntos
Interleucina-2 , Neoplasias Pancreáticas , Humanos , Interleucina-2/metabolismo , Interleucina-18/metabolismo , Fator de Transcrição STAT5/metabolismo , Exaustão das Células T , Linfócitos T CD8-Positivos/imunologia , Neoplasias Pancreáticas/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pancreáticas
14.
Nat Commun ; 14(1): 528, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726009

RESUMO

T cell receptor (TCR) transgenic mice represent an invaluable tool to study antigen-specific immune responses. In the pre-existing models, a monoclonal TCR is driven by a non-physiologic promoter and randomly integrated into the genome. Here, we create a highly efficient methodology to develop T cell receptor exchange (TRex) mice, in which TCRs, specific to the self/tumor antigen mesothelin (Msln), are integrated into the Trac locus, with concomitant Msln disruption to circumvent T cell tolerance. We show that high affinity TRex thymocytes undergo all sequential stages of maturation, express the exogenous TCR at DN4, require MHC class I for positive selection and undergo negative selection only when both Msln alleles are present. By comparison of TCRs with the same specificity but varying affinity, we show that Trac targeting improves functional sensitivity of a lower affinity TCR and confers resistance to T cell functional loss. By generating P14 TRex mice with the same specificity as the widely used LCMV-P14 TCR transgenic mouse, we demonstrate increased avidity of Trac-targeted TCRs over transgenic TCRs, while preserving physiologic T cell development. Together, our results support that the TRex methodology is an advanced tool to study physiological antigen-specific T cell behavior.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Camundongos Transgênicos , Diferenciação Celular , Autoantígenos
15.
Cell Rep ; 42(7): 112732, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37402168

RESUMO

Pancreatic ductal adenocarcinoma (PDA) orchestrates a suppressive tumor microenvironment that fosters immunotherapy resistance. Tumor-associated macrophages (TAMs) are the principal immune cell infiltrating PDA and are heterogeneous. Here, by employing macrophage fate-mapping approaches and single-cell RNA sequencing, we show that monocytes give rise to most macrophage subsets in PDA. Tumor-specific CD4, but not CD8, T cells promote monocyte differentiation into MHCIIhi anti-tumor macrophages. By conditional major histocompatibility complex (MHC) class II deletion on monocyte-derived macrophages, we show that tumor antigen presentation is required for instructing monocyte differentiation into anti-tumor macrophages, promoting Th1 cells, abrogating Treg cells, and mitigating CD8 T cell exhaustion. Non-redundant IFNγ and CD40 promote MHCIIhi anti-tumor macrophages. Intratumoral monocytes adopt a pro-tumor fate indistinguishable from that of tissue-resident macrophages following loss of macrophage MHC class II or tumor-specific CD4 T cells. Thus, tumor antigen presentation by macrophages to CD4 T cells dictates TAM fate and is a major determinant of macrophage heterogeneity in cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Monócitos , Linfócitos T CD4-Positivos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Antígenos de Neoplasias , Antígenos de Histocompatibilidade Classe II , Microambiente Tumoral , Neoplasias Pancreáticas
16.
Nat Cardiovasc Res ; 2(11): 1015-1031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38646596

RESUMO

Atherosclerosis is driven by the expansion of cholesterol-loaded 'foamy' macrophages in the arterial intima. Factors regulating foamy macrophage differentiation and survival in plaque remain poorly understood. Here we show, using trajectory analysis of integrated single-cell RNA sequencing data and a genome-wide CRISPR screen, that triggering receptor expressed on myeloid cells 2 (Trem2) is associated with foamy macrophage specification. Loss of Trem2 led to a reduced ability of foamy macrophages to take up oxidized low-density lipoprotein (oxLDL). Myeloid-specific deletion of Trem2 showed an attenuation of plaque progression, even when targeted in established atherosclerotic lesions, and was independent of changes in circulating cytokines, monocyte recruitment or cholesterol levels. Mechanistically, we link Trem2-deficient macrophages with a failure to upregulate cholesterol efflux molecules, resulting in impaired proliferation and survival. Overall, we identify Trem2 as a regulator of foamy macrophage differentiation and atherosclerotic plaque growth and as a putative therapeutic target for atherosclerosis.

17.
J Virol ; 85(11): 5565-70, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21411537

RESUMO

While T cell-based vaccines have the potential to provide protection against chronic virus infections, they also have the potential to generate immunopathology following subsequent virus infection. We develop a mathematical model to investigate the conditions under which T cells lead to protection versus adverse pathology. The model illustrates how the balance between virus clearance and immune exhaustion may be disrupted when vaccination generates intermediate numbers of specific CD8 T cells. Surprisingly, our model suggests that this adverse effect of vaccination is largely unaffected by the generation of mutant viruses that evade T cell recognition and cannot be avoided by simply increasing the quality (affinity) or diversity of the T cell response. These findings should be taken into account when developing vaccines against persistent infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença Crônica , Vacinação/efeitos adversos , Vacinas/efeitos adversos , Vacinas/imunologia , Viroses/imunologia , Viroses/patologia , Modelos Teóricos , Viroses/mortalidade
18.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35210305

RESUMO

BACKGROUND: Achieving robust responses with adoptive cell therapy for the treatment of the highly lethal pancreatic ductal adenocarcinoma (PDA) has been elusive. We previously showed that T cells engineered to express a mesothelin-specific T cell receptor (TCRMsln) accumulate in autochthonous PDA, mediate therapeutic antitumor activity, but fail to eradicate tumors in part due to acquisition of a dysfunctional exhausted T cell state. METHODS: Here, we investigated the role of immune checkpoints in mediating TCR engineered T cell dysfunction in a genetically engineered PDA mouse model. The fate of engineered T cells that were either deficient in PD-1, or transferred concurrent with antibodies blocking PD-L1 and/or additional immune checkpoints, were tracked to evaluate persistence, functionality, and antitumor activity at day 8 and day 28 post infusion. We performed RNAseq on engineered T cells isolated from tumors and compared differentially expressed genes to prototypical endogenous exhausted T cells. RESULTS: PD-L1 pathway blockade and/or simultaneous blockade of multiple coinhibitory receptors during adoptive cell therapy was insufficient to prevent engineered T cell dysfunction in autochthonous PDA yet resulted in subclinical activity in the lung, without enhancing anti-tumor immunity. Gene expression analysis revealed that ex vivo TCR engineered T cells markedly differed from in vivo primed endogenous effector T cells which can respond to immune checkpoint inhibitors. Early after transfer, intratumoral TCR engineered T cells acquired a similar molecular program to prototypical exhausted T cells that arise during chronic viral infection, but the molecular programs later diverged. Intratumoral engineered T cells exhibited decreased effector and cell cycle genes and were refractory to TCR signaling. CONCLUSIONS: Abrogation of PD-1 signaling is not sufficient to overcome TCR engineered T cell dysfunction in PDA. Our study suggests that contributions by both the differentiation pathways induced during the ex vivo T cell engineering process and intratumoral suppressive mechanisms render engineered T cells dysfunctional and resistant to rescue by blockade of immune checkpoints.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Linfócitos T/metabolismo , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Neoplasias Pancreáticas
19.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393950

RESUMO

We investigate how myeloid subsets differentially shape immunity to pancreatic ductal adenocarcinoma (PDA). We show that tumor antigenicity sculpts myeloid cell composition and functionality. Antigenicity promotes accumulation of type 1 dendritic cells (cDC1), which is driven by Xcr1 signaling, and overcomes macrophage-mediated suppression. The therapeutic activity of adoptive T cell therapy or programmed cell death ligand 1 blockade required cDC1s, which sustained splenic Klrg1+ cytotoxic antitumor T cells and functional intratumoral T cells. KLRG1 and cDC1 genes correlated in human tumors, and PDA patients with high intratumoral KLRG1 survived longer than patients with low intratumoral KLRG1. The immunotherapy CD40 agonist also required host cDC1s for maximal therapeutic benefit. However, CD40 agonist exhibited partial therapeutic benefit in cDC1-deficient hosts and resulted in priming of tumor-specific yet atypical CD8+ T cells with a regulatory phenotype and that failed to participate in tumor control. Monocyte/macrophage depletion using clodronate liposomes abrogated T cell priming yet enhanced the antitumor activity of CD40 agonist in cDC1-deficient hosts via engagement of innate immunity. In sum, our study supports that cDC1s are essential for sustaining effective antitumor T cells and supports differential roles for cDC1s and monocytes/macrophages in instructing T cell fate and immunotherapy response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Células Dendríticas , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas
20.
Front Immunol ; 11: 613815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584701

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Animais , Humanos , Imunoterapia/métodos , Linfócitos T/imunologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA