Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Bioanal Chem ; 414(29-30): 8317-8330, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36443451

RESUMO

Monoclonal antibody (mAb) coformulation containing two therapeutic proteins provides benefits of improved therapeutic efficacy and better patient compliance. Monitoring of the individual mAb stability in the coformulation is critical to ensure its quality and safety. Among post-translational modifications (PTMs), oxidation is often considered as one of the critical quality attributes (CQAs) as it potentially affects the structure and potency. Although hydrophobic interaction chromatography (HIC) and reversed phase liquid chromatography (RPLC) have been used to monitor overall protein oxidation, mass spectrometry of peptide digests resolved by LC methods can afford superior selectivity and sensitivity for specific PTMs. With the advent of the Quadrupole Dalton (QDa) mass spectrometer as an affordable add-on detector, implementation of targeted oxidation assays in development and quality control (QC) laboratories is now feasible. In this study, as the first effort to implement MS-based methods for antibody coformulation in QC laboratories, we developed and validated a high-throughput and robust focused peptide mapping method using QDa for simultaneous site-specific monitoring of oxidation of methionine and tryptophan residues in heavy-chain (HC) complementary determining regions (CDRs) of two co-formulated mAbs. The method was validated in terms of accuracy, precision, linearity, range, quantitation limit (QL), specificity, and solution stability per recommendations in ICH Q2. The method robustness was systematically assessed involving multiple sample preparation and instrument method parameters. The method met the validation criteria in GMP laboratories with excellent robustness and was implemented in both GMP and development environments.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Humanos , Mapeamento de Peptídeos , Controle de Qualidade , Oxirredução
2.
Anal Chem ; 93(23): 8161-8169, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032423

RESUMO

Polysorbate is widely used to maintain stability of biotherapeutic proteins in pharmaceutical formulation development. Degradation of polysorbate can lead to particle formation in drug products, which is a major quality concern and potential patient risk factor. Enzymatic activity from residual host cell enzymes such as lipases and esterases plays a major role for polysorbate degradation. Their high activity, often at very low concentration, constitutes a major analytical challenge in the biopharmaceutical industry. In this study, we evaluated and optimized the activity-based protein profiling (ABPP) approach to identify active enzymes responsible for polysorbate degradation. Using an optimized chemical probe, we established the first global profile of active serine hydrolases in harvested cell culture fluid (HCCF) for monoclonal antibodies (mAbs) production from two Chinese hamster ovary (CHO) cell lines. A total of eight known lipases were identified by ABPP with enzyme activity information, while only five lipases were identified by a traditional abundance-based proteomics (TABP) approach. Interestingly, phospholipase B-like 2 (PLBL2), a well-known problematic HCP was not found to be active in process-intermediates from two different mAbs. In a proof-of-concept study with downstream samples, phospholipase A2 group VII (PLA2G7) was only identified by ABPP and confirmed to contribute to polysorbate-80 degradation for the first time. The established ABBP approach is approved to be able to identify low-abundance host cell enzymes and fills the gap between lipase abundance and activity, which enables more meaningful polysorbate degradation investigations for biotherapeutic development.


Assuntos
Produtos Biológicos , Polissorbatos , Animais , Anticorpos Monoclonais , Células CHO , Cricetinae , Cricetulus , Humanos
3.
Bioconjug Chem ; 30(4): 1127-1132, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30946565

RESUMO

A synthetic method to access novel azido-insulin analogs directly from recombinant human insulin (RHI) was developed via diazo-transfer chemistry using imidazole-1-sulfonyl azide. Systematic optimization of reaction conditions led to site-selective azidation of amino acids B1-phenylalanine and B29-lysine present in RHI. Subsequently, the azido-insulin analogs were used in azide-alkyne [3 + 2] cycloaddition reactions to synthesize a diverse array of triazole-based RHI bioconjugates that were found to be potent human insulin receptor binders. The utility of this method was further demonstrated by the concise and controlled synthesis of a heterotrisubstituted insulin conjugate.


Assuntos
Azidas/síntese química , Insulina/química , Sequência de Aminoácidos , Aminoácidos/química , Azidas/química , Reação de Cicloadição , Humanos , Proteínas Recombinantes/química , Triazóis/química
4.
Biochemistry ; 56(20): 2537-2548, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28485924

RESUMO

General acid-base catalysis is a key mechanistic strategy in protein and RNA enzymes. Ribozymes use hydrated metal ions, nucleobases, and organic cofactors to carry this out. In most small ribozymes, a guanosine is positioned to participate in proton transfer with the nucleophilic 2'-OH. The unshifted pKa values for nucleobases and solvated metal ions are far from neutrality, however, and thus nonideal for general acid-base catalysis. Herein, evidence is provided for cooperative interaction in the hammerhead ribozyme among the guanine that interacts with the nucleophilic 2'-OH, G12, the -1 nucleobase C17, and Mg2+ ions. We introduce global fitting for analyzing ribozyme rate-pH data parametric in Mg2+ concentration and benchmark this method on data from the hepatitis delta virus ribozyme. We then apply global fitting to new rate-pH data for the hammerhead ribozyme using a minimal three-dimensional, four-channel cooperative model. The value for the pKa of G12 that we obtain is channel-dependent and varies from 8.1 to 9.9, shifting closest toward neutrality in the presence of two cationic species: C17H+ and a Mg2+ ion. The value for the pKa of the -1 nucleotide, C17, is increased a remarkable 3.5-5 pKa units toward neutrality. Shifting of the pKa of C17 appears to be driven by an electrostatic sandwich of C17 between carbonyl groups of the 5'-neighboring U and of G12 and involves cation-π interactions. Rate-pH profiles reveal that the major reactive channel under biological Mg2+ and pH involves a cationic C17 rather than a second metal ion. Substitution of a cationic base for a metal underscores the versatility of RNA.


Assuntos
Vírus Delta da Hepatite/enzimologia , RNA Catalítico/química , Catálise , Concentração de Íons de Hidrogênio , Magnésio/química , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
5.
RNA ; 20(3): 331-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442612

RESUMO

Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg(2+) ion concentrations are low, K(+) concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo-like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg(2+) (0.5-2 mM) and K(+) (140 mM) if the solution is supplemented with physiological amounts (∼ 20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.


Assuntos
Dobramento de RNA , RNA/química , RNA/fisiologia , Ácido Cacodílico/química , Cinética , Magnésio/química , Mutação/genética , Conformação de Ácido Nucleico , Polietilenoglicóis/química , Cloreto de Potássio/química , Termodinâmica
6.
Biochemistry ; 52(46): 8187-97, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24187989

RESUMO

In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that at physiological free Mg(2+) concentrations (∼0.1-0.5 mM), both crowders and cosolutes stimulate the rate of self-cleavage, up to ∼6-fold, but that in 10 mM Mg(2+) (conditions widely used for in vitro ribozyme studies) these same additives have virtually no effect on the self-cleavage rate. We further observe a dependence of the self-cleavage rate on crowder size, wherein the level of rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases at both low and high Mg(2+) concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering experiments reveal a structural basis for this stimulation in that higher-molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg(2+) that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg(2+) without a crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions.


Assuntos
Vírus Delta da Hepatite/genética , RNA Catalítico/química , RNA Catalítico/fisiologia , Humanos , Magnésio/administração & dosagem , Magnésio/farmacologia , Modelos Moleculares , Peso Molecular , Dobramento de RNA/efeitos dos fármacos , RNA Catalítico/efeitos dos fármacos , RNA Catalítico/genética , Proteínas de Ligação a RNA , Espalhamento a Baixo Ângulo , Ureia/farmacologia , Difração de Raios X
7.
J Pharm Sci ; 112(3): 691-699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36279953

RESUMO

The use of multi-attribute method (MAM) for identity and purity testing of biopharmaceuticals offers the ability to complement and replace multiple conventional analytical technologies with a single mass spectrometry (MS) method. Phase-appropriate method validation is one major consideration for the implementation of MAM in a current Good Manufacturing Practice (cGMP) environment. We developed a MAM workflow for therapeutic monoclonal antibodies (mAbs) with optimized sample preparation using lysyl endopeptidase (Lys-C) digestion. In this study, we evaluated the assay performances of this platform MAM workflow for identity, product quality attributes (PQAs) monitoring and new peak detection (NPD) for single and coformulated mAbs. An IgG4 mAb-1 and its coformulations were used as model molecules in this study. The assay performance evaluation demonstrated the full potential of the platform MAM approach for its intended use for characterization and quality control of single mAb-1 and mAb-1 in its coformulations. To the best of our knowledge, this is the first performance evaluation of MAM for mAb identity, PQA monitoring, and new peak detection (NPD) in a single assay, featuring 1) the first performance evaluation of MAM for PQA monitoring using Lys-C digestion with a high-resolution MS, 2) a new approach for mAb identity testing capable of distinguishing single mAb from coformulations using MAM, and 3) the performance evaluation of NPD for MAM with Lys-C digestion. The developed platform MAM workflow and the MAM performance evaluation paved the way for its GMP qualification and enabled clinical release of mAb-1 in GMP environment with MAM.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Controle de Qualidade , Digestão
8.
Science ; 376(6599): 1321-1327, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709255

RESUMO

The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.


Assuntos
Insulina , Penicilina Amidase , Peptídeos , Engenharia de Proteínas , Sequência de Aminoácidos , Humanos , Insulina/análogos & derivados , Insulina/biossíntese , Lisina/química , Penicilina Amidase/química , Penicilina Amidase/genética , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas/métodos
9.
Anal Chem ; 83(3): 928-32, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21175137

RESUMO

A fluorescence-based sensing scheme exploiting an environment-sensitive fluorophore embedded in a hydrogel has been developed for measurement of relative humidity (RH). The fluorophore, dapoxyl sulfonic acid (DSA), is incorporated into two different hydrogel films, agarose and a copolymer of acrylamide and 2-(dimethylamino)ethyl methacrylate (DMAEM) cross-linked with N,N'-methylenebisacrylamide. The swelling and contracting of the hydrogels in response to relative humidity alters the polarity of the environment of DSA, stimulating a shift in the emission wavelength. From 0 to 100% RH, acrylamide-DMAEM sensors exhibited a 40 and 15 nm wavelength shift in still air and flowing gas, respectively. Agarose sensors showed a 40 nm wavelength shift from 0 to 100% RH in still air and a 30 nm shift from 0 to 70% RH in flowing gas. Response times for both sensors were 15 min in still air and less than 5 min in flowing gas. The sensing approach is straightforward and cost-effective, yields sensors with characteristics suitable for commercial measurement of RH (i.e., sensitivity, response times, reproducibility), and allows ease of adaptability to specific RH measurement requirements. The results support the potential extension of the method to a wide variety of analytes in the vapor phase and aqueous solution by incorporation of functionalized "smart" hydrogels.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33845343

RESUMO

Recent advances in biomedical and pharmaceutical processes has enabled a notable increase of protein- and peptide-based drug therapies and vaccines that often contain a higher-order structure critical to their efficacy. Hyphenation of chromatographic and spectrometric techniques is at the center of all facets of biopharmaceutical analysis, purification and chemical characterization. Although computer-assisted chromatographic modeling of small molecules has reached a mature stage across the pharmaceutical industry, software-based method optimization approaches for large molecules has yet to see the same revitalization. Conformational changes of biomolecules under chromatographic conditions have been identified as the major culprit in terms of sub-optimal modeling outcomes. In order to circumvent these challenges, we herein investigate the outcomes generated via computer-assisted modeling from using different chaotropic and denaturing mobile phases (trifluoroacetic acid, sodium perchlorate and guanidine hydrochloride in acetonitrile/water-based eluents). Linear and polynomial regression retention models using ACD/Labs software were built as a function of gradient slope, column temperature and mobile phase buffer for eight different model proteins ranging from 12 to 670 kDa (holo-transferrin, cytochrome C, apomyoglobin, ribonuclease A, ribonuclease A type I-A, albumin, y-globulin and thyroglobulin bovine). Correlation between experimental and modeled outputs was substantially improved by using strong chaotropic and denaturing modifiers in the mobile phase, even when using linear regression modeling as typically observed for small molecules. On the contrary, the use of conventional TFA buffer concentrations at low column temperatures required the used of polynomial regression modeling indicating potential conformational structure changes of proteins upon chromatographic conditions. In addition, we illustrate the power of modern computer-assisted chromatography modeling combined with chaotropic agents in the developing of new RPLC assays for protein-based therapeutics and vaccines.

11.
J Chromatogr A ; 1496: 51-57, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28347518

RESUMO

Development of methodologies for studying protein higher-order structure in solution helps to establish a better understanding of the intrinsic link between protein conformational structure and biological function and activity. The goal of this study was to demonstrate a simultaneous screening approach for global protein conformational changes in solution through the combination of ion mobility spectrometry-mass spectrometry (IMS-MS) with differential hydrogen-deuterium exchange (ΔHDX) on the size-exclusion chromatography (SEC) platform in a single on-line workflow. A semi-automated experimental setup based on the use of SEC on-column conditions allowed for tracking of protein conformational changes in solution as a function of acetonitrile concentration. In this setup, the SEC protein elution data was complemented by the ΔHDX profile which showed global protein conformational changes as a difference in the number of deuterons exchanged to protons. The ΔHDX data, in turn, was complemented by the changes in the drift time by IMS-MS. All three orthogonal techniques were applied for studying global higher-order structure of the proteins ubiquitin, cytochrome c and myoglobin, in solution simultaneously. The described approach allows for the use of a crude sample (or mixture of proteins) and could be suitable for rapid comparison of protein batch-to-batch higher-order structure or for optimizing conditions for enzymatic reactions.


Assuntos
Cromatografia em Gel , Medição da Troca de Deutério , Conformação Proteica , Análise Espectral , Acetonitrilas , Automação/métodos , Citocromos c/química , Deutério , Íons/química , Espectrometria de Massas , Mioglobina/química , Prótons , Soluções , Ubiquitina/química
12.
Nat Commun ; 5: 4670, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25140538

RESUMO

Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.


Assuntos
DNA/química , Dextranos/química , Lipossomos/química , Polietilenoglicóis/química , RNA Catalítico/química , Reatores Biológicos , Emulsões , Fluoresceína-5-Isotiocianato , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes , Tamanho da Partícula , Rodaminas , Eletricidade Estática , Água/química
13.
Nat Chem ; 4(11): 941-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23089870

RESUMO

RNA performs important cellular functions in contemporary life forms. Its ability to act both as a catalyst and a storage mechanism for genetic information is also an important part of the RNA world hypothesis. Compartmentalization within modern cells allows the local concentration of RNA to be controlled and it has been suggested that this was also important in early life forms. Here, we mimic intracellular compartmentalization and macromolecular crowding by partitioning RNA in an aqueous two-phase system (ATPS). We show that the concentration of RNA is enriched by up to 3,000-fold in the dextran-rich phase of a polyethylene glycol/dextran ATPS and demonstrate that this can lead to approximately 70-fold increase in the rate of ribozyme cleavage. This rate enhancement can be tuned by the relative volumes of the two phases in the ATPS. Our observations support the importance of compartmentalization in the attainment of function in an RNA World as well as in modern biology.


Assuntos
Biocatálise , Biomimética , Compartimento Celular , RNA Catalítico/metabolismo , Dextranos/química , Espaço Intracelular/metabolismo , Polietilenoglicóis/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA