Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 709: 149806, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
2.
New Phytol ; 241(1): 329-342, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37771245

RESUMO

Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.


Assuntos
Microbiota , Triptofano , Glicosídeo Hidrolases , Bactérias , Solo/química , Microbiologia do Solo , Raízes de Plantas/microbiologia , Rizosfera
3.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003414

RESUMO

Bioactive peptides have emerged as promising therapeutic agents with antimicrobial, antifungal, antiparasitic, and, recently, antitumoral properties with a mechanism of action based on membrane destabilization and cell death, often involving a conformational change in the peptide. This biophysical study aims to provide preliminary insights into the membrane-level antitumoral mode of action of crotalicidin, a cationic host defense peptide from rattlesnake venom, toward breast cancer cell lines. The lipid composition of breast cancer cell lines was obtained after lipid extraction and quantification to prepare representative cell membrane models. Membrane-peptide interaction studies were performed using differential scanning calorimetry and Fourier-transform infrared spectroscopy. The outcome evidences the potential antitumoral activity and selectivity of crotalicidin toward breast cancer cell lines and suggests a mechanism initiated by the electrostatic interaction of the peptide with the lipid bilayer surface and posterior conformation change with membrane intercalation between the acyl chains in negatively charged lipid systems. This research provides valuable information that clears up the antitumoral mode of action of crotalicidin.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Bicamadas Lipídicas/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Varredura Diferencial de Calorimetria
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614022

RESUMO

Host defense peptides are found primarily as natural antimicrobial agents among all lifeforms. These peptides and their synthetic derivatives have been extensively studied for their potential use as therapeutic agents. The most accepted mechanism of action of these peptides is related to a nonspecific mechanism associated with their interaction with the negatively charged groups present in membranes, inducing bilayer destabilization and cell death through several routes. Among the most recently reported peptides, LTX-315 has emerged as an important oncolytic peptide that is currently in several clinical trials against different cancer types. However, there is a lack of biophysical studies regarding LTX-315 and its interaction with membranes. This research focuses primarily on the understanding of the molecular bases of LTX-315's interaction with eukaryotic lipids, based on two artificial systems representative of non-tumoral and tumoral membranes. Additionally, the interaction with individual lipids was studied by differential scanning calorimetry and Fourier-transformed infrared spectroscopy. The results showed a strong interaction of LTX-315 with the negatively charged phosphatidylserine. The results are important for understanding and facilitating the design and development of improved peptides with anticancer activity.


Assuntos
Anti-Infecciosos , Neoplasias , Humanos , Membranas Artificiais , Peptídeos Catiônicos Antimicrobianos , Neoplasias/tratamento farmacológico , Lipídeos , Bicamadas Lipídicas/química
5.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799456

RESUMO

Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.


Assuntos
Antioxidantes/química , Cloroplastos/química , Quinonas/química , Terpenos/química , Cloroplastos/genética , Cromanos/química , Cromanos/metabolismo , Plastídeos/química , Plastídeos/genética , Quinonas/metabolismo , Espécies Reativas de Oxigênio/química , Terpenos/metabolismo
6.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502472

RESUMO

Aß(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aß(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aß(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aß(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aß(1-42) peptide in human erythrocytes and molecular models.


Assuntos
Peptídeos beta-Amiloides , Membrana Eritrocítica , Compostos Heterocíclicos de 4 ou mais Anéis , Modelos Moleculares , Fragmentos de Peptídeos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade
7.
Plant Cell Physiol ; 61(4): 722-734, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879762

RESUMO

Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate ß-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedlings (cER bodies) and ER bodies in rosette leaves induced by treatment with the wounding hormone jasmonate (JA) (iER bodies). Here, we show that At-α whole-genome duplication (WGD) generated the paralogous genes NAI2 and TSA1, which consequently drive differentiation of cER bodies and iER bodies in Brassicaceae plants. In Arabidopsis, NAI2 is expressed in seedlings where cER bodies are formed, whereas TSA1 is expressed in JA-treated leaves where iER bodies are formed. We found that the expression of NAI2 in seedlings and the JA inducibility of TSA1 are conserved across other Brassicaceae plants. The accumulation of NAI2 transcripts in Arabidopsis seedlings is dependent on the transcription factor NAI1, whereas the JA induction of TSA1 in rosette leaves is dependent on MYC2, MYC3 and MYC4. We discovered regions of microsynteny, including the NAI2/TSA1 genes, but the promoter regions are differentiated between TSA1 and NAI2 genes in Brassicaceae. This suggests that the divergence of function between NAI2 and TSA1 occurred immediately after WGD in ancestral Brassicaceae plants to differentiate the formation of iER and cER bodies. Our findings indicate that At-α WGD enabled diversification of defense strategies, which may have contributed to the massive diversification of Brassicaceae plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassicaceae/genética , Retículo Endoplasmático/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Brassicaceae/metabolismo , Proteínas de Ligação ao Cálcio , Ciclopentanos/farmacologia , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Retículo Endoplasmático/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Plântula/genética , Plântula/metabolismo , Transativadores/genética , Transativadores/metabolismo
8.
Plant Cell Environ ; 42(4): 1270-1286, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362127

RESUMO

The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."


Assuntos
Diatomáceas/metabolismo , Tilacoides/metabolismo , Xantofilas/metabolismo , Clorofila A/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Epóxi/metabolismo , Fotossíntese , Espectrometria de Fluorescência , Temperatura
9.
Arch Biochem Biophys ; 662: 75-82, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529104

RESUMO

The interaction and protective effect of caffeic acid (CA) on human erythrocytes (RBC) and molecular models of its membrane were studied. The latter consisted of bilayers built up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry results indicated that CA induced structural and thermotropic perturbations in multilayers and vesicles of DMPC. Fluorescence spectroscopy analysis showed that CA increased the fluidity of DMPC vesicles and of human erythrocyte ghosts. Scanning electron microscopy observations displayed that CA induced morphological alterations to RBC from their normal discoid form to echinocytes. The assessment of its protective capacity showed that CA inhibits RBC morphological alterations and lysis induced by HClO. These findings imply that CA molecules were located in the outer monolayer of the erythrocyte membrane, and that this preferential location might effectively protect the red cells from damage caused by oxidizing species.


Assuntos
Ácidos Cafeicos/farmacologia , Eritrócitos/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/metabolismo , Eritrócitos/metabolismo , Glicerofosfolipídeos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Espectrometria de Fluorescência , Difração de Raios X
10.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234450

RESUMO

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Assuntos
Dolicóis/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosiltransferases/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dolicóis/análise , Fungos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Neurospora crassa/química , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/química , Trichoderma/metabolismo
11.
Biochim Biophys Acta Biomembr ; 1860(3): 718-727, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29269314

RESUMO

After cold shock, the Bacillus subtilis desaturase Des introduces double bonds into the fatty acids of existing membrane phospholipids. The synthesis of Des is regulated exclusively by the two-component system DesK/DesR; DesK serves as a sensor of the state of the membrane and triggers Des synthesis after a decrease in membrane fluidity. The aim of our work is to investigate the biophysical changes in the membrane that are able to affect the DesK signalling state. Using linear alcohols (ethanol, propanol, butanol, hexanol, octanol) and benzyl alcohol, we were able to suppress Des synthesis after a temperature downshift. The changes in the biophysical properties of the membrane caused by alcohol addition were followed using membrane fluorescent probes and differential scanning calorimetry. We found that the membrane fluidization induced by alcohols was reflected in an increased hydration at the lipid-water interface. This is associated with a decrease in DesK activity. The addition of alcohol mimics a temperature increase, which can be measured isothermically by fluorescence anisotropy. The effect of alcohols on the membrane periphery is in line with the concept of the mechanism by which two hydrophilic motifs located at opposite ends of the transmembrane region of DesK, which work as a molecular caliper, sense temperature-dependent variations in membrane properties.


Assuntos
Álcoois/farmacologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Ácidos Graxos Dessaturases/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais/efeitos dos fármacos , Motivos de Aminoácidos , Varredura Diferencial de Calorimetria , Membrana Celular/fisiologia , Temperatura Baixa , Indução Enzimática/efeitos dos fármacos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Polarização de Fluorescência , Genes Reporter , Interações Hidrofóbicas e Hidrofílicas , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo
12.
Biochem Biophys Res Commun ; 503(1): 209-214, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29879427

RESUMO

Labetalol is one of the most used drugs for the treatment of hypertension. This molecule is able to bind to both alpha-1 (α1) and beta (ß) adrenergic receptors present in vascular smooth muscle among other tissues. It has been determined that human erythrocytes possess both alpha receptors and beta-adrenergic receptors expressed on their surface. The objective of this work was to study the effect of labetalol on the morphology of human erythrocytes. To accomplish this goal, human erythrocytes and model membranes built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. These lipid species are present in the outer and inner monolayers of the red blood cell membrane, respectively. Our findings obtained by X-ray diffraction and differential scanning calorimetry (DSC) indicate that labetalol interacted with both lipids in a process dependent on concentration. In fact, at low concentrations labetalol preferentially interacted with DMPE. On the other hand, results obtained by scanning electron microscopy (SEM) showed that labetalol alters the normal biconcave form of erythrocytes to stomatocytes and knizocytes (cells with one or more cavities, respectively). According to the bilayers couple hypothesis, this result implied that the drug inserted in the inner monolayer of the human erythrocyte membrane.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Eritrócitos/efeitos dos fármacos , Labetalol/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/química , Antagonistas Adrenérgicos beta/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Humanos , Técnicas In Vitro , Labetalol/química , Lipossomos/química , Membranas Artificiais , Microscopia Eletrônica de Varredura , Fosfatidiletanolaminas/química , Difração de Raios X
13.
Ecotoxicol Environ Saf ; 160: 197-206, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29804017

RESUMO

Present study deals with the effect of 24 h pre-incubation with exogenous anthocyanins (ANTH), extracted from red cabbage leaves, on key metabolic processes (photosynthesis and respiration) and pro-/antioxidant balance in the aquatic macrophyte Egeria densa (Planch.) Casp., Hydrocharitaceae family, treated with Cd and Mn (in sulfate form) at a concentration of 100 µmol. After five days of metal treatments, Cd was accumulated and the damage caused to metabolic processes was stronger than Mn. In Cd-treated leaves, the protein level, chlorophyll concentration and maximal photochemical efficiency of PS II decreased twofold, and net-photosynthesis was significantly inhibited, whereas lipid peroxidation and H2O2 production increased. In turn, protective responses developed, including an increase in the total soluble thiols, alternative respiratory pathway capacity and the activity of superoxide dismutase and peroxidases. Pre-incubation in the ANTH-enriched extract caused an increase in foliar ANTH content, enhanced Cd and reduced Mn uptake into the tissue. A decrease in the level of oxidative reactions, an increase in the protein and chlorophyll concentration compared to the control values and a partial improvement of the photosynthetic parameters confirmed the ability of ANTH to reduce Cd-induced damage effects and to mitigate ROS-driven stress reactions. Stimulation of catalase and ascorbate peroxidase activity, an alternative respiration capacity and non-enzymatic antioxidant (carotenoids, ascorbate and proline) synthesis by ANTH were also revealed. These data suggest that ANTH-enriched extract from red cabbage leaves has a protective action against metal toxicity in Egeria plants.


Assuntos
Antocianinas/farmacologia , Cádmio/toxicidade , Hydrocharitaceae/efeitos dos fármacos , Manganês/toxicidade , Substâncias Protetoras/farmacologia , Antocianinas/isolamento & purificação , Ácido Ascórbico/metabolismo , Brassica/química , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Hydrocharitaceae/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prolina/metabolismo , Substâncias Protetoras/isolamento & purificação , Superóxido Dismutase/metabolismo
14.
Biochem Biophys Res Commun ; 483(1): 528-533, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27998775

RESUMO

Memantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes. With this purpose, the drug was developed to in vitro interact with human red cells and bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). The latter represent lipids respectively present in both outer and inner monolayers of the red cell membrane. Results obtained by scanning electron microscopy (SEM) showed that memantine changed the normal biconcave shape of red cells to cup-shaped stomatocytes. According to the bilayer-couple hypothesis the drug intercalated into the inner monolayer of the erythrocyte membrane. Experimental results obtained by X-ray diffraction on multibilayers of DMPC and DMPE, and by differential scanning calorimetry on multilamellar vesicles indicated that memantine preferentially interacted with DMPC in a concentration-dependent manner. Thus, it can be concluded that in the low therapeutic plasma concentration of circa 1 µM memantine is located in NMDA receptor channel without affecting the erythrocyte shape. However, at higher concentrations, once the receptors became saturated excess of memantine molecules (20 µM) would interact with phosphoinositide lipids present in the inner monolayer of the erythrocyte membrane inducing the formation of stomatocytes. However, 40-50 µM memantine was required to interact with isolated phosphatidylcholine bilayers.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Membrana Eritrocítica/efeitos dos fármacos , Memantina/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Relação Dose-Resposta a Droga , Membrana Eritrocítica/química , Eritrócitos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Lipídeos/química , Lipossomos/química , Microscopia Eletrônica de Varredura , Conformação Molecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Termodinâmica , Difração de Raios X
15.
Physiol Plant ; 160(3): 339-358, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28317130

RESUMO

The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Galactolipídeos/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Plantas/metabolismo
16.
Int J Phytoremediation ; 19(11): 1059-1064, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28441031

RESUMO

Among trace metals, lead is a highly toxic contaminant, being hazardous to humans and animals. Application of maize plants for phytoremediation of polluted soils and waters has recently been of particular interest. The aim of this work is to investigate the Pb-phytoextraction potential of the maize cv. Tzariza used widely in Eastern European agriculture. Maize seedlings were exposed in a nutrient solution to 1-10000 µM of Pb2+ for 21 days. Lead accumulated mostly in conductive tissues and shoots at 0.1 mM and higher concentrations of Pb in growth medium. Pb at concentrations of 1 and 10 mM caused an increase in the superoxide anion level and the catalase activity in maize leaves. Lead ions were tolerable to maize seedlings within a concentration range up to 1000 µM of Pb2+. The levels of lead in the nutrient solution above 1 mM resulted in inhibition of the growth of axial organs, decrease in leaf area, inhibition of water absorption, and reduction in accumulation of biomass. Theoretical considerations indicate that in the temperate climates of the phytoremediation with maize may allow annual removal up to 90 kg of Pb per km2, depending on the initial level of soil contamination.


Assuntos
Chumbo , Plântula , Poluentes do Solo , Zea mays , Agricultura , Biodegradação Ambiental , Biomassa , Folhas de Planta , Plântula/química
17.
J Membr Biol ; 249(6): 823-831, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27738716

RESUMO

Thimerosal (THI, ethyl-mercury thiosalicylate) is added to vaccines as a preservative; as a consequence, infants may have been exposed to bolus doses of Hg that collectively added up to nominally 200 µg Hg during the first 6 months of life. While several studies report an association between THI-containing vaccines and neurological disorders, other studies do not support the causal relation between THI and autism. With the purpose to understand the molecular mechanisms of the toxic effect of THI it was assayed on human red cells and in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids found in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of THI to interact with DMPC and DMPE was determined by X-ray diffraction and differential scanning calorimetry, whereas intact human erythrocytes were observed by optical, defocusing and scanning electron microscopy. The experimental findings of this study demonstrated that THI interacted in a concentration-dependent manner with DMPC and DMPE bilayers, and in vitro interacted with erythrocytes inducing morphological changes. However, concentrations were considerable higher than those present in vaccines.


Assuntos
Eritrócitos/efeitos dos fármacos , Bicamadas Lipídicas , Timerosal/farmacologia , Varredura Diferencial de Calorimetria , Células Cultivadas , Dimiristoilfosfatidilcolina/química , Membrana Eritrocítica/química , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/ultraestrutura , Humanos , Bicamadas Lipídicas/química , Lipossomos , Estrutura Molecular , Fosfatidiletanolaminas/química , Conservantes Farmacêuticos/farmacologia , Termodinâmica , Timerosal/química , Difração de Raios X
18.
J Membr Biol ; 249(6): 769-779, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27568391

RESUMO

Gallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane. Observations by optical, scanning electron, and defocusing microscopy demonstrated that GA is capable to convert red cells from their normal biconcave shape to crenated echinocytes. This result indicates that GA molecules are positioned in the outer monolayer of the red cell membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were selected as classes of phospholipids found in the outer and inner monolayers of the red cell membrane, respectively. X-ray diffraction and differential scanning calorimetry showed that GA was preferentially bound to DMPC bilayers. Experiments related to the antioxidant capacity of GA indicated that this compound offsets HClO oxidative capacity on DMPE bilayers. In addition, optical, scanning, defocusing microscopy, and hemolysis assays confirmed the protective capacity of GA against HClO deleterious effects on human red cells. As a conclusion, GA would be capable to block the access of oxidants into the lipid bilayer, and thus avoid their access into red cells.


Assuntos
Antioxidantes/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Ácido Gálico/farmacologia , Antioxidantes/química , Varredura Diferencial de Calorimetria , Células Cultivadas , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Eritrócitos/ultraestrutura , Ácido Gálico/química , Hemólise/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Estrutura Molecular , Fosfolipídeos , Termodinâmica , Difração de Raios X
19.
Biochim Biophys Acta ; 1838(1 Pt B): 266-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23954587

RESUMO

This report presents evidence that the following Solanum steroids: solasodine, diosgenin and solanine interact with human erythrocytes and molecular models of their membranes as follows: a) X-ray diffraction studies showed that the compounds at low molar ratios (0.1-10.0mol%) induced increasing structural perturbation to dimyristoylphosphatidylcholine bilayers and to a considerable lower extent to those of dimyristoylphosphatidylethanolamine; b) differential scanning calorimetry data showed that the compounds were able to alter the cooperativity of dimyristoylphosphatidylcholine, dimyristoylphosphatidylethanolamine and dimyristoylphosphatidylserine phase transitions in a concentration-dependent manner; c) in the presence of steroids, the fluorescence of Merocyanine 540 incorporated to the membranes decreased suggesting a fluidization of the lipid system; d) scanning electron microscopy observations showed that all steroids altered the normal shape of human erythrocytes inducing mainly echinocytosis, characterized by the formation of blebs in their surfaces, an indication that their molecules are located into the outer monolayer of the erythrocyte membrane.


Assuntos
Diosgenina/química , Membrana Eritrocítica/química , Bicamadas Lipídicas/química , Alcaloides de Solanáceas/química , Solanina/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Diosgenina/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Corantes Fluorescentes/química , Humanos , Microscopia Eletrônica de Varredura , Transição de Fase/efeitos dos fármacos , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Pirimidinonas/química , Espalhamento a Baixo Ângulo , Alcaloides de Solanáceas/farmacologia , Solanina/farmacologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA