Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 194(6): 1020-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493926

RESUMO

Mesenchymal epithelial transition (MET) protein overexpression is a targetable event in non-small cell lung cancer and is the subject of active drug development. Challenges in identifying patients for these therapies include lack of access to validated testing, such as standardized immunohistochemistry assessment, and consumption of valuable tissue for a single gene/protein assay. Development of prescreening algorithms using routinely available digitized hematoxylin and eosin (H&E)-stained slides to predict MET overexpression could promote testing for those who will benefit most. Recent literature reports a positive correlation between MET protein overexpression and RNA expression. In this work, a large database of matched H&E slides and RNA expression data were leveraged to train a weakly supervised model to predict MET RNA overexpression directly from H&E images. This model was evaluated on an independent holdout test set of 300 overexpressed and 289 normal patients, demonstrating a receiver operating characteristic area under curve of 0.70 (95th percentile interval: 0.66 to 0.74) with stable performance characteristics across different patient clinical variables and robust to synthetic noise on the test set. These results suggest that H&E-based predictive models could be useful to prioritize patients for confirmatory testing of MET protein or MET gene expression status.


Assuntos
Adenocarcinoma de Pulmão , Amarelo de Eosina-(YS) , Hematoxilina , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Transição Epitelial-Mesenquimal/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade
2.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35388408

RESUMO

Reproducibility of results obtained using ribonucleic acid (RNA) data across labs remains a major hurdle in cancer research. Often, molecular predictors trained on one dataset cannot be applied to another due to differences in RNA library preparation and quantification, which inhibits the validation of predictors across labs. While current RNA correction algorithms reduce these differences, they require simultaneous access to patient-level data from all datasets, which necessitates the sharing of training data for predictors when sharing predictors. Here, we describe SpinAdapt, an unsupervised RNA correction algorithm that enables the transfer of molecular models without requiring access to patient-level data. It computes data corrections only via aggregate statistics of each dataset, thereby maintaining patient data privacy. Despite an inherent trade-off between privacy and performance, SpinAdapt outperforms current correction methods, like Seurat and ComBat, on publicly available cancer studies, including TCGA and ICGC. Furthermore, SpinAdapt can correct new samples, thereby enabling unbiased evaluation on validation cohorts. We expect this novel correction paradigm to enhance research reproducibility and to preserve patient privacy.


Assuntos
Confidencialidade , Privacidade , Algoritmos , Humanos , RNA , Reprodutibilidade dos Testes
3.
Mod Pathol ; 35(12): 1791-1803, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198869

RESUMO

To achieve minimum DNA input requirements for next-generation sequencing (NGS), pathologists visually estimate macrodissection and slide count decisions. Unfortunately, misestimation may cause tissue waste and increased laboratory costs. We developed an artificial intelligence (AI)-augmented smart pathology review system (SmartPath) to empower pathologists with quantitative metrics for accurately determining tissue extraction parameters. SmartPath uses two deep learning architectures, a U-Net based network for cell segmentation and a multi-field-of-view convolutional network for tumor area segmentation, to extract features from digitized H&E-stained formalin-fixed paraffin-embedded slides. From the segmented tumor area, SmartPath suggests a macrodissection area. To predict DNA yield per slide, the extracted features from within the macrodissection area are correlated with known DNA yields to fit a regularized linear model (R = 0.85). Then, a pathologist-defined target yield divided by the predicted DNA yield per slide gives the number of slides to scrape. Following model development, an internal validation trial was conducted within the Tempus Labs molecular sequencing laboratory. We evaluated our system on 501 clinical colorectal cancer slides, where half received SmartPath-augmented review and half traditional pathologist review. The SmartPath cohort had 25% more DNA yields within a desired target range of 100-2000 ng. The number of extraction attempts was statistically unchanged between cohorts. The SmartPath system recommended fewer slides to scrape for large tissue sections, saving tissue in these cases. Conversely, SmartPath recommended more slides to scrape for samples with scant tissue sections, especially those with degraded DNA, helping prevent costly re-extraction due to insufficient extraction yield. A statistical analysis was performed to measure the impact of covariates on the results, offering insights on how to improve future applications of SmartPath. With these improvements, AI-augmented histopathologic review has the potential to decrease tissue waste, sequencing time, and laboratory costs by optimizing DNA yields, especially for samples with scant tissue and/or degraded DNA.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Inclusão em Parafina , DNA , Neoplasias/genética , Formaldeído
4.
Proc Biol Sci ; 283(1825): 20152946, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911961

RESUMO

Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary principle by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by comparing them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local interactions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun-exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages.


Assuntos
Comportamento Animal , Invertebrados/fisiologia , Animais , Oceano Atlântico , Simulação por Computador , Ecossistema , Modelos Biológicos , Movimento , Comportamento Social , Natação
5.
JAMA ; 316(22): 2402-2410, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27898976

RESUMO

Importance: Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. Objective: To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. Design and Setting: A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. Exposure: Deep learning-trained algorithm. Main Outcomes and Measures: The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. Results: The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%. Conclusions and Relevance: In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.


Assuntos
Algoritmos , Retinopatia Diabética/diagnóstico por imagem , Fundo de Olho , Aprendizado de Máquina , Edema Macular/diagnóstico por imagem , Redes Neurais de Computação , Fotografação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Oftalmologistas , Sensibilidade e Especificidade
6.
NPJ Precis Oncol ; 8(1): 88, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594360

RESUMO

Microsatellite instability-high (MSI-H) is a tumor-agnostic biomarker for immune checkpoint inhibitor therapy. However, MSI status is not routinely tested in prostate cancer, in part due to low prevalence and assay cost. As such, prediction of MSI status from hematoxylin and eosin (H&E) stained whole-slide images (WSIs) could identify prostate cancer patients most likely to benefit from confirmatory testing to evaluate their eligibility for immunotherapy and need for Lynch syndrome testing. Prostate biopsies and surgical resections from prostate cancer patients referred to our institution were analyzed. MSI status was determined by next-generation sequencing. Patients sequenced before a cutoff date formed an algorithm development set (n = 4015, MSI-H 1.8%) and a paired validation set (n = 173, MSI-H 19.7%) that consisted of two serial sections from each sample, one stained and scanned internally and the other at an external site. Patients sequenced after the cutoff date formed a temporally independent validation set (n = 1350, MSI-H 2.3%). Attention-based multiple instance learning models were trained to predict MSI-H from H&E WSIs. The predictor achieved area under the receiver operating characteristic curve values of 0.78 (95% CI [0.69-0.86]), 0.72 (95% CI [0.63-0.81]), and 0.72 (95% CI [0.62-0.82]) on the internally prepared, externally prepared, and temporal validation sets, respectively, showing effective predictability and generalization to both external staining/scanning processes and temporally independent samples. While MSI-H status is significantly correlated with Gleason score, the model remained predictive within each Gleason score subgroup.

7.
Proc Biol Sci ; 280(1769): 20131724, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23986110

RESUMO

In many animal groups, coordinated activity is facilitated by the emergence of leaders and followers. Although the identity of leaders is to some extent predictable, most groups experience frequent changes of leadership. How do group members cope with such changes in their social role? Here, we compared the foraging behaviour of pairs of stickleback fish after a period of either (i) role reinforcement, which involved rewarding the shyer follower for following, and the bolder leader for leading, or (ii) role reversal, which involved rewarding the shyer follower for leading, and the bolder leader for following. We found that, irrespective of an individual's temperament, its tendency to follow is malleable, whereas the tendency to initiate collective movement is much more resistant to change. As a consequence of this lack of flexibility in initiative, greater temperamental differences within a pair led to improved performance when typical roles were reinforced, but to impaired performance when typical roles were reversed.


Assuntos
Comportamento Animal , Smegmamorpha/fisiologia , Comportamento Social , Animais , Inglaterra , Cadeias de Markov , Personalidade
8.
Mol Diagn Ther ; 27(4): 499-511, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37099070

RESUMO

INTRODUCTION: Cancers assume a variety of distinct histologies, and may originate from a myriad of sites including solid organs, hematopoietic cells, and connective tissue. Clinical decision-making based on consensus guidelines such as the National Comprehensive Cancer Network (NCCN) is often predicated on a specific histologic and anatomic diagnosis, supported by clinical features and pathologist interpretation of morphology and immunohistochemical (IHC) staining patterns. However, in patients with nonspecific morphologic and IHC findings-in addition to ambiguous clinical presentations such as recurrence versus new primary-a definitive diagnosis may not be possible, resulting in the patient being categorized as having a cancer of unknown primary (CUP). Therapeutic options and clinical outcomes are poor for patients with CUP, with a median survival of 8-11 months. METHODS: Here, we describe and validate the Tempus Tumor Origin (Tempus TO) assay, an RNA-sequencing-based machine learning classifier capable of discriminating between 68 clinically relevant cancer subtypes. Model accuracy was assessed using primary and/or metastatic samples with known subtype. RESULTS: We show that the Tempus TO model is 91% accurate when assessed on both a retrospectively held out cohort and a set of samples sequenced after model freeze that collectively contained 9210 total samples with known diagnoses. When evaluated on a cohort of CUPs, the model recapitulated established associations between genomic alterations and cancer subtype. DISCUSSION: Combining diagnostic prediction tests (e.g., Tempus TO) with sequencing-based variant reporting (e.g., Tempus xT) may expand therapeutic options for patients with cancers of unknown primary or uncertain histology.


Assuntos
Neoplasias Primárias Desconhecidas , Transcriptoma , Humanos , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/genética , Neoplasias Primárias Desconhecidas/patologia , Perfilação da Expressão Gênica/métodos , Estudos Retrospectivos , Genômica
9.
Cancer Med ; 12(19): 19394-19405, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37712677

RESUMO

BACKGROUND: Roughly 5% of metastatic cancers present with uncertain origin, for which molecular classification could influence subsequent management; however, prior studies of molecular diagnostic classifiers have reported mixed results with regard to clinical impact. In this retrospective study, we evaluated the utility of a novel molecular diagnostic classifier by assessing theoretical changes in treatment and additional testing recommendations from oncologists before and after the review of classifier predictions. METHODS: We retrospectively analyzed de-identified records from 289 patients with a consensus diagnosis of cancer of uncertain/unknown primary (CUP). Two (or three, if adjudication was required) independent oncologists separately reviewed patient clinical information to determine the course of treatment before they reviewed results from the molecular diagnostic classifier and subsequently evaluated whether the predicted diagnosis would alter their treatment plan. RESULTS: Results from the molecular diagnostic classifier changed the consensus oncologist-reported treatment recommendations for 235 out of 289 patients (81.3%). At the level of individual oncologist reviews (n = 414), 64.7% (n = 268) of treatment recommendations were based on CUP guidelines prior to review of results from the molecular diagnostic classifier. After seeing classifier results, 98.1% (n = 207) of the reviews, where treatment was specified (n = 211), were guided by the tissue of origin-specific guidelines. Overall, 89.9% of the 414 total reviews either expressed strong agreement (n = 242) or agreement (n = 130) that the molecular diagnostic classifier result increased confidence in selecting the most appropriate treatment regimen. CONCLUSIONS: A retrospective review of CUP cases demonstrates that a novel molecular diagnostic classifier could affect treatment in the majority of patients, supporting its clinical utility. Further studies are needed to prospectively evaluate whether the use of molecular diagnostic classifiers improves clinical outcomes in CUP patients.


Assuntos
Segunda Neoplasia Primária , Neoplasias Primárias Desconhecidas , Humanos , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/genética , Neoplasias Primárias Desconhecidas/patologia , Estudos Retrospectivos , Patologia Molecular
10.
Commun Med (Lond) ; 1: 10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602201

RESUMO

Background: Gleason grading of prostate cancer is an important prognostic factor, but suffers from poor reproducibility, particularly among non-subspecialist pathologists. Although artificial intelligence (A.I.) tools have demonstrated Gleason grading on-par with expert pathologists, it remains an open question whether and to what extent A.I. grading translates to better prognostication. Methods: In this study, we developed a system to predict prostate cancer-specific mortality via A.I.-based Gleason grading and subsequently evaluated its ability to risk-stratify patients on an independent retrospective cohort of 2807 prostatectomy cases from a single European center with 5-25 years of follow-up (median: 13, interquartile range 9-17). Results: Here, we show that the A.I.'s risk scores produced a C-index of 0.84 (95% CI 0.80-0.87) for prostate cancer-specific mortality. Upon discretizing these risk scores into risk groups analogous to pathologist Grade Groups (GG), the A.I. has a C-index of 0.82 (95% CI 0.78-0.85). On the subset of cases with a GG provided in the original pathology report (n = 1517), the A.I.'s C-indices are 0.87 and 0.85 for continuous and discrete grading, respectively, compared to 0.79 (95% CI 0.71-0.86) for GG obtained from the reports. These represent improvements of 0.08 (95% CI 0.01-0.15) and 0.07 (95% CI 0.00-0.14), respectively. Conclusions: Our results suggest that A.I.-based Gleason grading can lead to effective risk stratification, and warrants further evaluation for improving disease management.

11.
Clin Breast Cancer ; 21(4): e340-e361, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33446413

RESUMO

OBJECTIVE/BACKGROUND: We performed a retrospective analysis of longitudinal real-world data (RWD) from patients with breast cancer to replicate results from clinical studies and demonstrate the feasibility of generating real-world evidence. We also assessed the value of transcriptome profiling as a complementary tool for determining molecular subtypes. METHODS: De-identified, longitudinal data were analyzed after abstraction from records of patients with breast cancer in the United States (US) structured and stored in the Tempus database. Demographics, clinical characteristics, molecular subtype, treatment history, and survival outcomes were assessed according to strict qualitative criteria. RNA sequencing and clinical data were used to predict molecular subtypes and signaling pathway enrichment. RESULTS: The clinical abstraction cohort (n = 4000) mirrored the demographics and clinical characteristics of patients with breast cancer in the US, indicating feasibility for RWE generation. Among patients who were human epidermal growth factor receptor 2-positive (HER2+), 74.2% received anti-HER2 therapy, with ∼70% starting within 3 months of a positive test result. Most non-treated patients were early stage. In this RWD set, 31.7% of patients with HER2+ immunohistochemistry (IHC) had discordant fluorescence in situ hybridization results recorded. Among patients with multiple HER2 IHC results at diagnosis, 18.6% exhibited intra-test discordance. Through development of a whole-transcriptome model to predict IHC receptor status in the molecular sequenced cohort (n = 400), molecular subtypes were resolved for all patients (n = 36) with equivocal HER2 statuses from abstracted test results. Receptor-related signaling pathways were differentially enriched between clinical molecular subtypes. CONCLUSIONS: RWD in the Tempus database mirrors the overall population of patients with breast cancer in the US. These results suggest that real-time, RWD analyses are feasible in a large, highly heterogeneous database. Furthermore, molecular data may aid deficiencies and discrepancies observed from breast cancer RWD.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Análise de Sequência de RNA , Idoso , Neoplasias da Mama/terapia , Bases de Dados Factuais , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Estudos Retrospectivos , Sensibilidade e Especificidade , Estados Unidos
12.
NPJ Digit Med ; 4(1): 71, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875798

RESUMO

Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases (7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95% CI: 0.66-0.73) and 0.69 (95% CI: 0.64-0.72), and added significant predictive value to a set of nine clinicopathologic features. To interpret the DLS, we explored the ability of different human-interpretable features to explain the variance in DLS scores. We observed that clinicopathologic features such as T-category, N-category, and grade explained a small fraction of the variance in DLS scores (R2 = 18% in both validation sets). Next, we generated human-interpretable histologic features by clustering embeddings from a deep-learning-based image-similarity model and showed that they explained the majority of the variance (R2 of 73-80%). Furthermore, the clustering-derived feature most strongly associated with high DLS scores was also highly prognostic in isolation. With a distinct visual appearance (poorly differentiated tumor cell clusters adjacent to adipose tissue), this feature was identified by annotators with 87.0-95.5% accuracy. Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies.

13.
Cell Rep ; 36(4): 109429, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320344

RESUMO

Patient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.


Assuntos
Neoplasias/patologia , Organoides/patologia , Medicina de Precisão , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fluorescência , Genômica , Antígenos HLA/genética , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Neoplasias/genética , Redes Neurais de Computação , Transcriptoma/genética
14.
PLoS One ; 15(6): e0233678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555646

RESUMO

Providing prognostic information at the time of cancer diagnosis has important implications for treatment and monitoring. Although cancer staging, histopathological assessment, molecular features, and clinical variables can provide useful prognostic insights, improving risk stratification remains an active research area. We developed a deep learning system (DLS) to predict disease specific survival across 10 cancer types from The Cancer Genome Atlas (TCGA). We used a weakly-supervised approach without pixel-level annotations, and tested three different survival loss functions. The DLS was developed using 9,086 slides from 3,664 cases and evaluated using 3,009 slides from 1,216 cases. In multivariable Cox regression analysis of the combined cohort including all 10 cancers, the DLS was significantly associated with disease specific survival (hazard ratio of 1.58, 95% CI 1.28-1.70, p<0.0001) after adjusting for cancer type, stage, age, and sex. In a per-cancer adjusted subanalysis, the DLS remained a significant predictor of survival in 5 of 10 cancer types. Compared to a baseline model including stage, age, and sex, the c-index of the model demonstrated an absolute 3.7% improvement (95% CI 1.0-6.5) in the combined cohort. Additionally, our models stratified patients within individual cancer stages, particularly stage II (p = 0.025) and stage III (p<0.001). By developing and evaluating prognostic models across multiple cancer types, this work represents one of the most comprehensive studies exploring the direct prediction of clinical outcomes using deep learning and histopathology images. Our analysis demonstrates the potential for this approach to provide significant prognostic information in multiple cancer types, and even within specific pathologic stages. However, given the relatively small number of cases and observed clinical events for a deep learning task of this type, we observed wide confidence intervals for model performance, thus highlighting that future work will benefit from larger datasets assembled for the purposes for survival modeling.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/patologia , Adulto , Fatores Etários , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/mortalidade , Prognóstico , Medição de Risco/métodos , Fatores de Risco , Fatores Sexuais , Análise de Sobrevida
15.
JAMA Netw Open ; 3(11): e2023267, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180129

RESUMO

Importance: Expert-level artificial intelligence (AI) algorithms for prostate biopsy grading have recently been developed. However, the potential impact of integrating such algorithms into pathologist workflows remains largely unexplored. Objective: To evaluate an expert-level AI-based assistive tool when used by pathologists for the grading of prostate biopsies. Design, Setting, and Participants: This diagnostic study used a fully crossed multiple-reader, multiple-case design to evaluate an AI-based assistive tool for prostate biopsy grading. Retrospective grading of prostate core needle biopsies from 2 independent medical laboratories in the US was performed between October 2019 and January 2020. A total of 20 general pathologists reviewed 240 prostate core needle biopsies from 240 patients. Each pathologist was randomized to 1 of 2 study cohorts. The 2 cohorts reviewed every case in the opposite modality (with AI assistance vs without AI assistance) to each other, with the modality switching after every 10 cases. After a minimum 4-week washout period for each batch, the pathologists reviewed the cases for a second time using the opposite modality. The pathologist-provided grade group for each biopsy was compared with the majority opinion of urologic pathology subspecialists. Exposure: An AI-based assistive tool for Gleason grading of prostate biopsies. Main Outcomes and Measures: Agreement between pathologists and subspecialists with and without the use of an AI-based assistive tool for the grading of all prostate biopsies and Gleason grade group 1 biopsies. Results: Biopsies from 240 patients (median age, 67 years; range, 39-91 years) with a median prostate-specific antigen level of 6.5 ng/mL (range, 0.6-97.0 ng/mL) were included in the analyses. Artificial intelligence-assisted review by pathologists was associated with a 5.6% increase (95% CI, 3.2%-7.9%; P < .001) in agreement with subspecialists (from 69.7% for unassisted reviews to 75.3% for assisted reviews) across all biopsies and a 6.2% increase (95% CI, 2.7%-9.8%; P = .001) in agreement with subspecialists (from 72.3% for unassisted reviews to 78.5% for assisted reviews) for grade group 1 biopsies. A secondary analysis indicated that AI assistance was also associated with improvements in tumor detection, mean review time, mean self-reported confidence, and interpathologist agreement. Conclusions and Relevance: In this study, the use of an AI-based assistive tool for the review of prostate biopsies was associated with improvements in the quality, efficiency, and consistency of cancer detection and grading.


Assuntos
Inteligência Artificial/normas , Patologia Clínica/normas , Neoplasias da Próstata/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia com Agulha de Grande Calibre/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Estudos Retrospectivos
16.
Nat Med ; 26(6): 886-891, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393799

RESUMO

The electrocardiogram (ECG) is a widely used medical test, consisting of voltage versus time traces collected from surface recordings over the heart1. Here we hypothesized that a deep neural network (DNN) can predict an important future clinical event, 1-year all-cause mortality, from ECG voltage-time traces. By using ECGs collected over a 34-year period in a large regional health system, we trained a DNN with 1,169,662 12-lead resting ECGs obtained from 253,397 patients, in which 99,371 events occurred. The model achieved an area under the curve (AUC) of 0.88 on a held-out test set of 168,914 patients, in which 14,207 events occurred. Even within the large subset of patients (n = 45,285) with ECGs interpreted as 'normal' by a physician, the performance of the model in predicting 1-year mortality remained high (AUC = 0.85). A blinded survey of cardiologists demonstrated that many of the discriminating features of these normal ECGs were not apparent to expert reviewers. Finally, a Cox proportional-hazard model revealed a hazard ratio of 9.5 (P < 0.005) for the two predicted groups (dead versus alive 1 year after ECG) over a 25-year follow-up period. These results show that deep learning can add substantial prognostic information to the interpretation of 12-lead resting ECGs, even in cases that are interpreted as normal by physicians.


Assuntos
Aprendizado Profundo , Eletrocardiografia , Mortalidade , Medição de Risco , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Área Sob a Curva , Cardiologistas , Causas de Morte , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Estudos Retrospectivos
17.
JAMA Oncol ; 6(9): 1372-1380, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32701148

RESUMO

Importance: For prostate cancer, Gleason grading of the biopsy specimen plays a pivotal role in determining case management. However, Gleason grading is associated with substantial interobserver variability, resulting in a need for decision support tools to improve the reproducibility of Gleason grading in routine clinical practice. Objective: To evaluate the ability of a deep learning system (DLS) to grade diagnostic prostate biopsy specimens. Design, Setting, and Participants: The DLS was evaluated using 752 deidentified digitized images of formalin-fixed paraffin-embedded prostate needle core biopsy specimens obtained from 3 institutions in the United States, including 1 institution not used for DLS development. To obtain the Gleason grade group (GG), each specimen was first reviewed by 2 expert urologic subspecialists from a multi-institutional panel of 6 individuals (years of experience: mean, 25 years; range, 18-34 years). A third subspecialist reviewed discordant cases to arrive at a majority opinion. To reduce diagnostic uncertainty, all subspecialists had access to an immunohistochemical-stained section and 3 histologic sections for every biopsied specimen. Their review was conducted from December 2018 to June 2019. Main Outcomes and Measures: The frequency of the exact agreement of the DLS with the majority opinion of the subspecialists in categorizing each tumor-containing specimen as 1 of 5 categories: nontumor, GG1, GG2, GG3, or GG4-5. For comparison, the rate of agreement of 19 general pathologists' opinions with the subspecialists' majority opinions was also evaluated. Results: For grading tumor-containing biopsy specimens in the validation set (n = 498), the rate of agreement with subspecialists was significantly higher for the DLS (71.7%; 95% CI, 67.9%-75.3%) than for general pathologists (58.0%; 95% CI, 54.5%-61.4%) (P < .001). In subanalyses of biopsy specimens from an external validation set (n = 322), the Gleason grading performance of the DLS remained similar. For distinguishing nontumor from tumor-containing biopsy specimens (n = 752), the rate of agreement with subspecialists was 94.3% (95% CI, 92.4%-95.9%) for the DLS and similar at 94.7% (95% CI, 92.8%-96.3%) for general pathologists (P = .58). Conclusions and Relevance: In this study, the DLS showed higher proficiency than general pathologists at Gleason grading prostate needle core biopsy specimens and generalized to an independent institution. Future research is necessary to evaluate the potential utility of using the DLS as a decision support tool in clinical workflows and to improve the quality of prostate cancer grading for therapy decisions.


Assuntos
Interpretação de Imagem Assistida por Computador , Gradação de Tumores/normas , Neoplasias da Próstata/diagnóstico , Adolescente , Adulto , Algoritmos , Inteligência Artificial , Biópsia com Agulha de Grande Calibre/métodos , Aprendizado Profundo , Humanos , Masculino , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/patologia , Manejo de Espécimes , Estados Unidos/epidemiologia , Adulto Jovem
18.
Biophys J ; 96(9): 3744-52, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19413980

RESUMO

Proteins are denatured in aqueous urea solution. The nature of the molecular driving forces has received substantial attention in the past, whereas the question how urea acts at different phases of unfolding is not yet well understood at the atomic level. In particular, it is unclear whether urea actively attacks folded proteins or instead stabilizes unfolded conformations. Here we investigated the effect of urea at different phases of unfolding by molecular dynamics simulations, and the behavior of partially unfolded states in both aqueous urea solution and in pure water was compared. Whereas the partially unfolded protein in water exhibited hydrophobic collapses as primary refolding events, it remained stable or even underwent further unfolding steps in aqueous urea solution. Further, initial unfolding steps of the folded protein were found not to be triggered by urea, but instead, stabilized. The underlying mechanism of this stabilization is a favorable interaction of urea with transiently exposed, less-polar residues and the protein backbone, thereby impeding back-reactions. Taken together, these results suggest that, quite generally, urea-induced protein unfolding proceeds primarily not by active attack. Rather, thermal fluctuations toward the unfolded state are stabilized and the hydrophobic collapse of partially unfolded proteins toward the native state is impeded. As a result, the equilibrium is shifted toward the unfolded state.


Assuntos
Proteínas de Bactérias/química , Simulação por Computador , Proteínas de Choque Térmico/química , Modelos Moleculares , Dobramento de Proteína , Ureia/química , Bacillus , Interações Hidrofóbicas e Hidrofílicas , Cinética , Cadeias de Markov , Estabilidade Proteica , Estrutura Secundária de Proteína , Temperatura , Água
19.
Biophys J ; 97(2): 581-9, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19619473

RESUMO

The transport of large biomolecules such as proteins and RNA across nuclear pore complexes is a field of strong interest and research. Although the basic mechanisms are fairly well understood, the details of the underlying intermolecular interaction within these transport complexes are still unclear. The recognition dynamics and energetics of cargo binding to the transport receptor are not yet resolved. Here, the binding of dimethylated RNA-caps to snurportin 1 is studied by molecular-dynamics simulations. The simulations reveal a strong structural response of the protein upon RNA-cap release. In particular, major rearrangements occur in regions already intrinsically flexible in the holo structure. Additionally, the difference in free energy of binding to snurportin 1 between the two methylation states of the RNA-cap, responsible for the directionality of the transport is quantified. In particular, desolvation of the ligand is revealed as the key-step in binding to snurportin 1. These findings suggest that the binding of m(3)G-capped RNA is mainly driven by the enhanced water entropy gain of the solvation shell.


Assuntos
Modelos Moleculares , Proteínas de Ligação ao Cap de RNA/química , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Entropia , Humanos , Ligantes , Metilação , Análise de Componente Principal , Ligação Proteica , Estrutura Secundária de Proteína , Solventes/química , Solventes/metabolismo , Água/química , Água/metabolismo
20.
PLoS Comput Biol ; 4(11): e1000221, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19008937

RESUMO

Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 micros of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted) for hyperpolar urea. These results strongly suggest that apolar urea-protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity.


Assuntos
Proteínas/química , Ureia/farmacologia , Aminoácidos/química , Simulação por Computador , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína , Proteínas/metabolismo , Solventes , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA