Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(8): e54825, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35699132

RESUMO

The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the "core" redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.


Assuntos
Drosophila melanogaster , Complexo IV da Cadeia de Transporte de Elétrons , Sequência de Aminoácidos , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mamíferos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteômica
2.
J Chem Inf Model ; 64(5): 1682-1690, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38417111

RESUMO

Epitranscriptomic mRNA modifications affect gene expression, with their altered balance detected in various cancers. YTHDF proteins contain the YTH reader domain recognizing the m6A mark on mRNA and represent valuable drug targets. Crystallographic structures have been determined for all three family members; however, discrepancies are present in the organization of the m6A-binding pocket. Here, we present new crystallographic structures of the YTH domain of YTHDF1, accompanied by computational studies, showing that this domain can exist in different stable conformations separated by a significant energetic barrier. During the transition, additional conformations are explored, with peculiar druggable pockets appearing and offering new opportunities for the design of YTH-interfering small molecules.


Assuntos
Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Maleabilidade , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Conformação Molecular
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732012

RESUMO

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Assuntos
Catequina , MicroRNAs , Neuroblastoma , Proteínas de Ligação a RNA , Catequina/análogos & derivados , Catequina/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
4.
J Chem Inf Model ; 63(15): 4875-4887, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37515548

RESUMO

The superbug Staphylococcus aureus (S. aureus) exhibits several resistance mechanisms, including efflux pumps, that strongly contribute to antimicrobial resistance. In particular, the NorA efflux pump activity is associated with S. aureus resistance to fluoroquinolone antibiotics (e.g., ciprofloxacin) by promoting their active extrusion from cells. Thus, since efflux pump inhibitors (EPIs) are able to increase antibiotic concentrations in bacteria as well as restore their susceptibility to these agents, they represent a promising strategy to counteract bacterial resistance. Additionally, the very recent release of two NorA efflux pump cryo-electron microscopy (cryo-EM) structures in complex with synthetic antigen-binding fragments (Fabs) represents a real breakthrough in the study of S. aureus antibiotic resistance. In this scenario, supervised molecular dynamics (SuMD) and molecular docking experiments were combined to investigate for the first time the molecular mechanisms driving the interaction between NorA and efflux pump inhibitors (EPIs), with the ultimate goal of elucidating how the NorA efflux pump recognizes its inhibitors. The findings provide insights into the dynamic NorA-EPI intermolecular interactions and lay the groundwork for future drug discovery efforts aimed at the identification of novel molecules to fight antimicrobial resistance.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Ciprofloxacina/farmacologia , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/química , Testes de Sensibilidade Microbiana
5.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835004

RESUMO

Molecular docking is one of the most widely used computational approaches in the field of rational drug design, thanks to its favorable balance between the rapidity of execution and the accuracy of provided results. Although very efficient in exploring the conformational degrees of freedom available to the ligand, docking programs can sometimes suffer from inaccurate scoring and ranking of generated poses. To address this issue, several post-docking filters and refinement protocols have been proposed throughout the years, including pharmacophore models and molecular dynamics simulations. In this work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of protein-ligand unbinding kinetics, to the refinement of docking results. TTMD evaluates the conservation of the native binding mode throughout a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints. The protocol was successfully applied to retrieve the native-like binding pose among a set of decoy poses of drug-like ligands generated on four different pharmaceutically relevant biological targets, including casein kinase 1δ, casein kinase 2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos
6.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770941

RESUMO

Trypanosoma brucei is a species of kinetoplastid causing sleeping sickness in humans and nagana in cows and horses. One of the peculiarities of this species of parasites is represented by their redox metabolism. One of the proteins involved in this redox machinery is the monothiol glutaredoxin 1 (1CGrx1) which is characterized by a unique disordered N-terminal extension exclusively conserved in trypanosomatids and other organisms. This region modulates the binding profile of the glutathione/trypanothione binding site, one of the functional regions of 1CGrx1. No endogenous ligands are known to bind this protein which does not present well-shaped binding sites, making it target particularly challenging to target. With the aim of targeting this peculiar system, we carried out two different screenings: (i) a fragment-based lead discovery campaign directed to the N-terminal as well as to the canonical binding site of 1CGrx1; (ii) a structure-based virtual screening directed to the 1CGrx1 canonical binding site. Here we report a small molecule that binds at the glutathione binding site in which the binding mode of the molecule was deeply investigated by Nuclear Magnetic Resonance (NMR). This compound represents an important step in the attempt to develop a novel strategy to interfere with the peculiar Trypanosoma Brucei redox system, making it possible to shed light on the perturbation of this biochemical machinery and eventually to novel therapeutic possibilities.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Humanos , Feminino , Animais , Bovinos , Cavalos , Trypanosoma brucei brucei/metabolismo , Glutarredoxinas/química , Trypanosoma/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Glutationa/metabolismo
7.
J Chem Inf Model ; 62(22): 5715-5728, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36315402

RESUMO

The prediction of ligand efficacy has long been linked to thermodynamic properties such as the equilibrium dissociation constant, which considers both the association and the dissociation rates of a defined protein-ligand complex. In the last 15 years, there has been a paradigm shift, with an increased interest in the determination of kinetic properties such as the drug-target residence time since they better correlate with ligand efficacy compared to other parameters. In this article, we present thermal titration molecular dynamics (TTMD), an alternative computational method that combines a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints for the qualitative estimation of protein-ligand-binding stability. The protocol has been applied to four different pharmaceutically relevant test cases, including protein kinase CK1δ, protein kinase CK2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease, on a variety of ligands with different sizes, structures, and experimentally determined affinity values. In all four cases, TTMD was successfully able to distinguish between high-affinity compounds (low nanomolar range) and low-affinity ones (micromolar), proving to be a useful screening tool for the prioritization of compounds in a drug discovery campaign.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Ligantes , Ligação Proteica , SARS-CoV-2
8.
J Enzyme Inhib Med Chem ; 37(1): 1704-1714, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35695095

RESUMO

Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome has undergone several mutations. The emergence of such variants has resulted in multiple pandemic waves, contributing to sustaining to date the number of infections, hospitalisations, and deaths despite the swift development of vaccines, since most of these mutations are concentrated on the Spike protein, a viral surface glycoprotein that is the main target for most vaccines. A milestone in the fight against the COVID-19 pandemic has been represented by the development of Paxlovid, the first orally available drug against COVID-19, which acts on the Main Protease (Mpro). In this article, we analyse the structural features of both the Spike protein and the Mpro of the recently reported SARS-CoV-2 variant XE, as well the closely related XD and XF ones, discussing their impact on the efficacy of existing treatments against COVID-19 and on the development of future ones.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Mutação , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
J Enzyme Inhib Med Chem ; 37(1): 1077-1082, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35418253

RESUMO

Despite a huge effort by the scientific community to determine the animal reservoir of SARS-CoV-2, which led to the identification of several SARS-CoV-2-related viruses both in bats and in pangolins, the origin of SARS-CoV-2 is still not clear. Recently, Temmam et al. reported the discovery of bat coronaviruses with a high degree of genome similarity with SARS-CoV-2, especially concerning the RBDs of the S protein, which mediates the capability of such viruses to enter and therefore infect human cells through a hACE2-dependent pathway. These viruses, especially the one named BANAL-236, showed a higher affinity for the hACE2 compared to the original strain of SARS-CoV-2. In the present work, we analyse the similarities and differences between the 3CL protease (main protease, Mpro) of these newly reported viruses and SARS-CoV-2, discussing their relevance relative to the efficacy of existing therapeutic approaches against COVID-19, particularly concerning the recently approved orally available Paxlovid, and the development of future ones.


Assuntos
Quirópteros , Proteases 3C de Coronavírus , Coronavirus , Animais , Quirópteros/virologia , Coronavirus/enzimologia , SARS-CoV-2
10.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562894

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/tratamento farmacológico , Edaravone/uso terapêutico , Humanos , Neurônios Motores , Receptores Acoplados a Proteínas G , Riluzol/uso terapêutico
11.
Bioorg Chem ; 115: 105203, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371375

RESUMO

A novel class of potential MAO-B inhibitors was designed and synthesized in good yield by combining the pyridazinone moiety with the dithiocarbamate framework, two relevant pharmacophores for drug discovery. The biological results obtained for the different pyridazinone/dithiocarbamate hybrids (compounds 8-14) indicated that most of them reversibly and selectively inhibit the hMAO-B in vitro with IC50 values in the µM range and exhibit not significant cellular toxicity. The analogues 9a1, 11a1, 12a2, 12b1 and 12b2, which present the dithiocarbamate fragment derivatized with a piperidin-1-yl or pyrrolidin-1-yl group and placed at C3 or C4 of the diazine ring, were the most attractive compounds of these series. Molecular modeling studies were performed to analyze the binding mode to the enzyme and the structure activity relationships of the titled compounds, as well as to predict their drug-like properties.


Assuntos
Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Piridazinas/farmacologia , Tiocarbamatos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade , Tiocarbamatos/química
12.
J Enzyme Inhib Med Chem ; 36(1): 1646-1650, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34289752

RESUMO

The chemical structure of PF-07321332, the first orally available Covid-19 clinical candidate, has recently been revealed by Pfizer. No information has been provided about the interaction pattern between PF-07321332 and its biomolecular counterpart, the SARS-CoV-2 main protease (Mpro). In the present work, we exploited Supervised Molecular Dynamics (SuMD) simulations to elucidate the key features that characterise the interaction between this drug candidate and the protease, emphasising similarities and differences with other structurally related inhibitors such as Boceprevir and PF-07304814. The structural insights provided by SuMD will hopefully be able to inspire the rational discovery of other potent and selective protease inhibitors.


Assuntos
Antivirais/química , Lactamas/química , Leucina/química , Simulação de Dinâmica Molecular , Nitrilas/química , Prolina/química , Inibidores de Proteases/química , Antivirais/farmacologia , Humanos , Lactamas/farmacologia , Leucina/farmacologia , Ligantes , Nitrilas/farmacologia , Peptídeo Hidrolases/metabolismo , Prolina/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Software
13.
J Enzyme Inhib Med Chem ; 36(1): 1-14, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33115279

RESUMO

Fragment-based lead discovery (FBLD) is one of the most efficient methods to develop new drugs. We present here a new computational protocol called High-Throughput Supervised Molecular Dynamics (HT-SuMD), which makes it possible to automatically screen up to thousands of fragments, representing therefore a new valuable resource to prioritise fragments in FBLD campaigns. The protocol was applied to Bcl-XL, an oncological protein target involved in the regulation of apoptosis through protein-protein interactions. Initially, HT-SuMD performances were validated against a robust NMR-based screening, using the same set of 100 fragments. These independent results showed a remarkable agreement between the two methods. Then, a virtual screening on a larger library of additional 300 fragments was carried out and the best hits were validated by NMR. Remarkably, all the in silico selected fragments were confirmed as Bcl-XL binders. This represents, to date, the largest computational fragments screening entirely based on MD.


Assuntos
Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/isolamento & purificação
14.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361083

RESUMO

The mammalian protein prestin is expressed in the lateral membrane wall of the cochlear hair outer cells and is responsible for the electromotile response of the basolateral membrane, following hyperpolarisation or depolarisation of the cells. Its impairment marks the onset of severe diseases, like non-syndromic deafness. Several studies have pointed out possible key roles of residues located in the Transmembrane Domain (TMD) that differentiate mammalian prestins as incomplete transporters from the other proteins belonging to the same solute-carrier (SLC) superfamily, which are classified as complete transporters. Here, we exploit the homology of a prototypical incomplete transporter (rat prestin, rPres) and a complete transporter (zebrafish prestin, zPres) with target structures in the outward open and inward open conformations. The resulting models are then embedded in a model membrane and investigated via a rigorous molecular dynamics simulation protocol. The resulting trajectories are analyzed to obtain quantitative descriptors of the equilibration phase and to assess a structural comparison between proteins in different states, and between different proteins in the same state. Our study clearly identifies a network of key residues at the interface between the gate and the core domains of prestin that might be responsible for the conformational change observed in complete transporters and hindered in incomplete transporters. In addition, we study the pathway of Cl- ions in the presence of an applied electric field towards their putative binding site in the gate domain. Based on our simulations, we propose a tilt and shift mechanism of the helices surrounding the ion binding cavity as the working principle of the reported conformational changes in complete transporters.


Assuntos
Proteínas de Transporte de Ânions/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Transportadores de Sulfato/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência , Transportadores de Sulfato/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
15.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575906

RESUMO

Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated approach in the drug discovery process, leading to several drug candidates under investigation in clinical trials and some approved drugs. Among these successful applications of the FBDD approach, kinases represent a class of targets where this strategy has demonstrated its real potential with the approved kinase inhibitor Vemurafenib. In the Kinase family, protein kinase CK1 isoform δ (CK1δ) has become a promising target in the treatment of different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In the present work, we set up and applied a computational workflow for the identification of putative fragment binders in large virtual databases. To validate the method, the selected compounds were tested in vitro to assess the CK1δ inhibition.


Assuntos
Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/química , Descoberta de Drogas/métodos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade , Fluxo de Trabalho
16.
Bioorg Chem ; 104: 104203, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932120

RESUMO

The 3-pyridazinylcoumarin scaffold was previously reported as an efficient core for the discovery of reversible and selective inhibitors of MAO-B, a validated drug target for PD therapy which also plays an important role in the AD progress. Looking for its structural optimization, novel compounds of hybrid structure coumarin-pyridazine, differing in polarizability and lipophilicity properties, were synthesized and tested against the two MAO isoforms, MAO-A and MAO-B (compounds 17a-f and 18a-f). All the designed compounds selectively inhibited the MAO-B isoenzyme, exhibiting many of them IC50 values ranging from sub-micromolar to nanomolar grade and lacking neuronal toxicity. The 7-bromo-3-(6-bromopyridazin-3-yl)coumarin (18c), the most potent compound of these series (IC50 = 60 nM), was subjected to further in vivo studies in a reserpine-induced mouse PD model. The obtained results suggest a promising potential for 18c as antiparkinsonian agent. Molecular modeling studies also provided valuable information about the enzyme-drug interactions and the potential pharmacokinetic profile of the novel compounds.


Assuntos
Cumarínicos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Piridazinas/farmacologia , Animais , Cumarínicos/administração & dosagem , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/administração & dosagem , Inibidores da Monoaminoxidase/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Doença de Parkinson/metabolismo , Piridazinas/administração & dosagem , Piridazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Molecules ; 25(20)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053878

RESUMO

Fragment-Based Drug Discovery (FBDD) approaches have gained popularity not only in industry but also in academic research institutes. However, the computational prediction of the binding mode adopted by fragment-like molecules within a protein binding site is still a very challenging task. One of the most crucial aspects of fragment binding is related to the large amounts of bound waters in the targeted binding pocket. The binding affinity of fragments may not be sufficient to displace the bound water molecules. In the present work, we confirmed the importance of the bound water molecules in the correct prediction of the fragment binding mode. Moreover, we investigate whether the use of methods based on explicit solvent molecular dynamics simulations can improve the accuracy of fragment posing. The protein chosen for this study is HSP-90.


Assuntos
Proteínas de Choque Térmico HSP90/análise , Simulação de Dinâmica Molecular , Animais , Sítios de Ligação , Desenho de Fármacos , Humanos , Água
18.
Molecules ; 25(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471211

RESUMO

While a plethora of different protein-ligand docking protocols have been developed over the past twenty years, their performances greatly depend on the provided input protein-ligand pair. In this study, we developed a machine-learning model that uses a combination of convolutional and fully connected neural networks for the task of predicting the performance of several popular docking protocols given a protein structure and a small compound. We also rigorously evaluated the performance of our model using a widely available database of protein-ligand complexes and different types of data splits. We further open-source all code related to this study so that potential users can make informed selections on which protocol is best suited for their particular protein-ligand pair.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Quimioinformática , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular
19.
Biochem J ; 475(14): 2377-2393, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29891613

RESUMO

The complex formation between the proteins apoptosis-inducing factor (AIF) and cyclophilin A (CypA) following oxidative stress in neuronal cells has been suggested as a main target for reverting ischemia-stroke damage. Recently, a peptide encompassing AIF residues 370-394 has been developed to target the AIF-binding site on CypA, to prevent the association between the two proteins and suppress glutamate-induced cell death in neuronal cells. Using a combined approach based on NMR spectroscopy, synthesis and in vitro testing of all Ala-scan mutants of the peptide and molecular docking/molecular dynamics, we have generated a detailed model of the AIF (370-394)/CypA complex. The model suggests us that the central region of the peptide spanning residues V374-K384 mostly interacts with the protein and that for efficient complex inhibition and preservation of CypA activity, it is bent around amino acids F46-G75 of the protein. The model is consistent with experimental data also from previous works and supports the concept that the peptide does not interfere with other CypA activities unrelated to AIF activation; therefore, it may serve as an ideal template for generating future non-peptidic antagonists.


Assuntos
Fator de Indução de Apoptose/química , Ciclofilina A/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Humanos , Espectroscopia de Ressonância Magnética
20.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330841

RESUMO

The number of entries in the Protein Data Bank (PDB) has doubled in the last decade, and it has increased tenfold in the last twenty years. The availability of an ever-growing number of structures is having a huge impact on the Structure-Based Drug Discovery (SBDD), allowing investigation of new targets and giving the possibility to have multiple structures of the same macromolecule in a complex with different ligands. Such a large resource often implies the choice of the most suitable complex for molecular docking calculation, and this task is complicated by the plethora of possible posing and scoring function algorithms available, which may influence the quality of the outcomes. Here, we report a large benchmark performed on the PDBbind database containing more than four thousand entries and seventeen popular docking protocols. We found that, even in protein families wherein docking protocols generally showed acceptable results, certain ligand-protein complexes are poorly reproduced in the self-docking procedure. Such a trend in certain protein families is more pronounced, and this underlines the importance in identification of a suitable protein-ligand conformation coupled to a well-performing docking protocol.


Assuntos
Bases de Dados de Proteínas , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA