Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(15-16): 1109-1122, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301766

RESUMO

Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+ ; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , MicroRNAs , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/patologia
2.
Small ; 20(26): e2310149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233200

RESUMO

Bioinspired nanotopography is a promising approach to generate antimicrobial surfaces to combat implant-associated infection. Despite efforts to develop bactericidal 1D structures, the antibacterial capacity of 2D structures and their mechanism of action remains uncertain. Here, hydrothermal synthesis is utilized to generate two 2D nanoflake surfaces on titanium (Ti) substrates and investigate the physiological effects of nanoflakes on bacteria. The nanoflakes impair the attachment and growth of Escherichia coli and trigger the accumulation of intracellular reactive oxygen species (ROS), potentially contributing to the killing of adherent bacteria. E. coli surface appendages type-1 fimbriae and flagella are not implicated in the nanoflake-mediated modulation of bacterial attachment but do influence the bactericidal effects of nanoflakes. An E. coli ΔfimA mutant lacking type-1 fimbriae is more susceptible to the bactericidal effects of nanoflakes than the parent strain, while E. coli cells lacking flagella (ΔfliC) are more resistant. The results suggest that type-1 fimbriae confer a cushioning effect that protects bacteria upon initial contact with the nanoflake surface, while flagella-mediated motility can lead to elevated membrane abrasion. This finding offers a better understanding of the antibacterial properties of nanoflake structures that can be applied to the design of antimicrobial surfaces for future medical applications.


Assuntos
Escherichia coli , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/química , Aderência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/metabolismo
3.
J Synchrotron Radiat ; 31(Pt 2): 328-335, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300132

RESUMO

The structural and chemical evolution of battery electrodes at the nanoscale plays an important role in affecting the cell performance. Nano-resolution X-ray microscopy has been demonstrated as a powerful technique for characterizing the evolution of battery electrodes under operating conditions with sensitivity to their morphology, compositional distribution and redox heterogeneity. In real-world batteries, the electrode could deform upon battery operation, causing challenges for the image registration which is necessary for several experimental modalities, e.g. XANES imaging. To address this challenge, this work develops a deep-learning-based method for automatic particle identification and tracking. This approach was not only able to facilitate image registration with good robustness but also allowed quantification of the degree of sample deformation. The effectiveness of the method was first demonstrated using synthetic datasets with known ground truth. The method was then applied to an experimental dataset collected on an operating lithium battery cell, revealing a high degree of intra- and interparticle chemical complexity in operating batteries.

4.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35945035

RESUMO

Neural network (NN)-based protein modeling methods have improved significantly in recent years. Although the overall accuracy of the two non-homology-based modeling methods, AlphaFold and RoseTTAFold, is outstanding, their performance for specific protein families has remained unexamined. G-protein-coupled receptor (GPCR) proteins are particularly interesting since they are involved in numerous pathways. This work directly compares the performance of these novel deep learning-based protein modeling methods for GPCRs with the most widely used template-based software-Modeller. We collected the experimentally determined structures of 73 GPCRs from the Protein Data Bank. The official AlphaFold repository and RoseTTAFold web service were used with default settings to predict five structures of each protein sequence. The predicted models were then aligned with the experimentally solved structures and evaluated by the root-mean-square deviation (RMSD) metric. If only looking at each program's top-scored structure, Modeller had the smallest average modeling RMSD of 2.17 Å, which is better than AlphaFold's 5.53 Å and RoseTTAFold's 6.28 Å, probably since Modeller already included many known structures as templates. However, the NN-based methods (AlphaFold and RoseTTAFold) outperformed Modeller in 21 and 15 out of the 73 cases with the top-scored model, respectively, where no good templates were available for Modeller. The larger RMSD values generated by the NN-based methods were primarily due to the differences in loop prediction compared to the crystal structures.


Assuntos
Receptores Acoplados a Proteínas G , Software , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Receptores Acoplados a Proteínas G/química
5.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34530437

RESUMO

The trade-off between a machine learning (ML) and deep learning (DL) model's predictability and its interpretability has been a rising concern in central nervous system-related quantitative structure-activity relationship (CNS-QSAR) analysis. Many state-of-the-art predictive modeling failed to provide structural insights due to their black box-like nature. Lack of interpretability and further to provide easy simple rules would be challenging for CNS-QSAR models. To address these issues, we develop a protocol to combine the power of ML and DL to generate a set of simple rules that are easy to interpret with high prediction power. A data set of 940 market drugs (315 CNS-active, 625 CNS-inactive) with support vector machine and graph convolutional network algorithms were used. Individual ML/DL modeling methods were also constructed for comparison. The performance of these models was evaluated using an additional external dataset of 117 market drugs (42 CNS-active, 75 CNS-inactive). Fingerprint-split validation was adopted to ensure model stringency and generalizability. The resulting novel hybrid ensemble model outperformed other constituent traditional QSAR models with an accuracy of 0.96 and an F1 score of 0.95. With the power of the interpretability provided with this protocol, our model laid down a set of simple physicochemical rules to determine whether a compound can be a CNS drug using six sub-structural features. These rules displayed higher classification ability than classical guidelines, with higher specificity and more mechanistic insights than just for blood-brain barrier permeability. This hybrid protocol can potentially be used for other drug property predictions.


Assuntos
Aprendizado Profundo , Barreira Hematoencefálica , Aprendizado de Máquina , Permeabilidade , Máquina de Vetores de Suporte
6.
Opt Express ; 32(10): 16867-16878, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858883

RESUMO

In this paper, a highly integrated terahertz (THz) biosensor is proposed and implemented, which pioneered the preparation of low-temperature gallium arsenide (LT-GaAs) thin film photoconductive antenna (PCA) on the sensor for direct generation and detection of THz waves, simplifying complex terahertz time-domain spectroscopy (THz-TDS) systems. A latch type metasurface is deposited in the detection region to produce a resonance absorption peak at 0.6 THz that is independent of polarisation. Microfluidics is utilised and automatic injection is incorporated to mitigate the experimental effects of hydrogen bond absorption of THz waves in aqueous-based environment. Additionally, cell damage is minimised by regulating the cell flow rate. The biosensor was utilised to detect the concentration of three distinct sizes of bacteria with successful results. The assay was executed as a proof of concept to detect two distinct types of breast cancer cells. Based on the experimental findings, it has been observed that the amplitude and blueshift of the resonance absorption peaks have the ability to identify and differentiate various cancer cell types. The findings of this study introduce a novel approach for developing microfluidic THz metasurface biosensors that possess exceptional levels of integration, sensitivity, and rapid label-free detection capabilities.


Assuntos
Arsenicais , Técnicas Biossensoriais , Gálio , Espectroscopia Terahertz , Gálio/química , Arsenicais/química , Técnicas Biossensoriais/instrumentação , Espectroscopia Terahertz/instrumentação , Humanos , Desenho de Equipamento , Microfluídica/instrumentação
7.
BMC Cancer ; 24(1): 504, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644473

RESUMO

BACKGROUND: Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration. METHODS: The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line. After subcutaneous inoculation of H128-Mut into nude mice, H128-LM and H128-BPM (brain parenchymal metastasis) cell lines were primarily cultured from LM and BPM tissues individually, and employed to in vitro drug testing. The SCLC-LM mouse model was established by inoculating H128-LM into nude mice via carotid artery and subjected to in vivo drug testing. RNA-seq and immunoblotting were conducted to uncover the molecular targets for LM. RESULTS: The SCLC-LM mouse model was successfully established, confirmed by in vivo live imaging and histological examination. The upregulated genes included EZH2, SLC44A4, VEGFA, etc. in both BPM and LM cells, while SLC44A4 was particularly upregulated in LM cells. When combined with PROTAC EZH2 degrader-1, the drug sensitivity of cisplatin, etoposide (VP16), and teniposide (VM26) for H128-LM was significantly increased in vitro. The in vivo drug trials with SCLC-LM mouse model demonstrated that PROTAC EZH2 degrader-1 plus VM26 or cisplatin/ VP16 inhibited H128-LM tumour significantly compared to VM26 or cisplatin/ VP16 alone (P < 0.01). CONCLUSION: The SCLC-LM model effectively simulates the pathophysiological process of SCLC metastasis to the leptomeninges. PROTAC EZH2 degrader-1 overcomes chemoresistance in SCLC, suggesting its potential therapeutic value for SCLC LM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Camundongos Nus , Podofilotoxina , Carcinoma de Pequenas Células do Pulmão , Animais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Camundongos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/uso terapêutico , Linhagem Celular Tumoral , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Proteólise/efeitos dos fármacos
8.
Cell Commun Signal ; 22(1): 45, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233864

RESUMO

OBJECTIVES: Histological transformation to small cell lung cancer (SCLC) has been identified as a mechanism of TKIs resistance in EGFR-mutant non-small cell lung cancer (NSCLC). We aim to explore the prevalence of transformation in EGFR-wildtype NSCLC and the mechanism of SCLC transformation, which are rarely understood. METHODS: We reviewed 1474 NSCLC patients to investigate the NSCLC-to-SCLC transformed cases and the basic clinical characteristics, driver gene status and disease course of them. To explore the potential functional genes in SCLC transformation, we obtained pre- and post-transformation specimens and subjected them to a multigene NGS panel involving 416 cancer-related genes. To validate the putative gene function, we established knocked-out models by CRISPR-Cas 9 in HCC827 and A549-TP53-/- cells and investigated the effects on tumor growth, drug sensitivity and neuroendocrine phenotype in vitro and in vivo. We also detected the expression level of protein and mRNA to explore the molecular mechanism involved. RESULTS: We firstly reported an incidence rate of 9.73% (11/113) of SCLC transformation in EGFR-wildtype NSCLC and demonstrated that SCLC transformation is irrespective of EGFR mutation status (P = 0.16). We sequenced 8 paired tumors and identified a series of mutant genes specially in transformed SCLC such as SMAD4, RICTOR and RET. We firstly demonstrated that SMAD4 deficiency can accelerate SCLC transition by inducing neuroendocrine phenotype regardless of RB1 status in TP53-deficient NSCLC cells. Further mechanical experiments identified the SMAD4 can regulate ASCL1 transcription competitively with Myc in NSCLC cells and Myc inhibitor acts as a potential subsequent treatment agent. CONCLUSIONS: Transformation to SCLC is irrespective of EFGR status and can be accelerated by SMAD4 in non-small cell lung cancer. Myc inhibitor acts as a potential therapeutic drug for SMAD4-mediated resistant lung cancer. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a Retinoblastoma/genética , Proteína Smad4/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Ubiquitina-Proteína Ligases/genética
9.
Metab Brain Dis ; 39(1): 147-171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37542622

RESUMO

Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/diagnóstico , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Genômica , Proteínas de Ligação a RNA/genética
10.
Echocardiography ; 41(7): e15876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980981

RESUMO

OBJECTIVES: To assess the ability of left atrial (LA) strain parameters to discriminate patients with elevated left atrial pressure (LAP) from patients with atrial fibrillation (AF). METHODS AND RESULTS: A total of 142 patients with non-valvular AF who underwent first catheter ablation (CA) between November 2022 and November 2023 were enrolled in the study. Conventional and speckle-tracking echocardiography (STE) were performed in all patients within 24 h before CA, and LAP was invasively measured during the ablation procedure. According to mean LAP, the study population was classified into two groups of normal LAP (LAP < 15 mmHg, n = 101) and elevated LAP (LAP ≥ 15 mmHg, n = 41). Compared with the normal LAP group, elevated LAP group showed significantly reduced LA reservoir strain (LASr) [9.14 (7.97-11.80) vs. 20 (13.59-26.96), p < .001], and increased LA filling index [9.60 (7.15-12.20) vs. 3.72 (2.17-5.82), p < .001], LA stiffness index [1.13 (.82-1.46) vs. .47 (.30-.70), p < .001]. LASr, LA filling index and LA stiffness index were independent predictors of elevated LAP after adjusted by the type of AF, EDT, E/e', mitral E, and peak acceleration rate of mitral E velocity. The receiver-operating characteristic curve (ROC) analysis showed LA strain parameters (area under curve [AUC] .794-.819) could provide similar or greater diagnostic accuracy for elevated LAP, as compared to conventional echocardiographic parameters. Furthermore, the novel algorithms built by LASr, LA stiffness index, LA filling index, and left atrial emptying fraction (LAEF), was used to discriminate elevated LAP in AF with good accuracy (AUC .880, accuracy of 81.69%, sensitivity of 80.49%, and specificity of 82.18%), and much better than 2016 ASE/EACVI algorithms in AF. CONCLUSION: In patients with AF, LA strain parameters could be useful to predict elevated LAP and non-inferior to conventional echocardiographic parameters. Besides, the novel algorithm built by LA strain parameters combined with conventional parameters would improve the diagnostic efficiency.


Assuntos
Fibrilação Atrial , Função do Átrio Esquerdo , Pressão Atrial , Ecocardiografia , Átrios do Coração , Humanos , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Feminino , Masculino , Pessoa de Meia-Idade , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/fisiopatologia , Ecocardiografia/métodos , Pressão Atrial/fisiologia , Função do Átrio Esquerdo/fisiologia , Valor Preditivo dos Testes , Ablação por Cateter/métodos , Reprodutibilidade dos Testes , Idoso
11.
Environ Toxicol ; 39(8): 4105-4119, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38642008

RESUMO

Diallyl disulfide (DADS), an organic component of allicin abstracted from garlic, possesses multi-target antitumor activity. DJ-1 performs a vital function in promoting AKT aberrant activation via down-regulating phosphatase and tensin homologue (PTEN) in tumors. It is unknown the involvement of DJ-1 in epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. The purpose of this study is to investigate whether diallyl disulfide (DADS) intervenes in the role of DJ-1 in GC. Based on the identification that the correlation between high DJ-1 and low PTEN expression in GC was implicated in clinical progression, we illuminated that down-regulation of DJ-1 by DADS aided in an increase in PTEN expression and a decrease in phosphorylated AKT levels, which was in line with the results manifested in the DJ-1 knockdown and overexpressed cells, concurrently inhibiting proliferation, EMT, migration, and invasion. Furthermore, the antagonistic effects of DADS on DJ-1 were observed in in vivo experiments. Additionally, DADS mitigated the DJ-1-associated drug resistance. The current study revealed that DJ-1 is one of potential targets for DADS, which hopefully provides a promising strategy for prevention and adjuvant chemotherapy of GC.


Assuntos
Compostos Alílicos , Proliferação de Células , Dissulfetos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Proteína Desglicase DJ-1 , Neoplasias Gástricas , Dissulfetos/farmacologia , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Compostos Alílicos/farmacologia , Humanos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Movimento Celular/efeitos dos fármacos , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C
12.
J Environ Manage ; 353: 120120, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278117

RESUMO

Traditional industries and industrialization have led to widespread environmental pollution and ecosystem degradation in major river basins globally. Strategies centered on ecological restoration and ecological economy are emerging as essential tools for effective environmental governance. This study aims to investigate how a multifaceted framework for land ecological consolidation, with various developmental goals, can effectively support ecological restoration and sustainability. Through quantitative analysis and in-depth interviews, we investigated the case of Yangtze riverside chemical industrial park in Changzhou. This park pursues ecological and economic sustainability through chemical industry transformation, ecological restoration and protection, ecological management, and ecological industry development. The results show that this practice established a multi-objective action framework rooted in urban renewal, land consolidation, ecological restoration, industrial transformation, and rural revitalization. Through multiplanning integration, integrated implementation and full-cycle profit distribution, the aim of ecological protection has been initially achieved, offering a crucial guarantee for sustainable development. A total of 96.47 ha ecological space expanded, which can generate ecological product worth CNY 7.283 billion, alongside a net economic benefit of CNY 978 million over three decades. The top-down ecological responsibilities, coupled with local developmental demands, have stimulated collaborations within a bottom-up endogenous network comprising government, enterprises, and residents.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Política Ambiental , China , Poluição Ambiental , Rios
13.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999105

RESUMO

Sugar substitutes, which generally refer to a class of food additives, mostly have vibration frequencies within the terahertz (THz) band. Therefore, THz technology can be used to analyze their molecular properties. To understand the characteristics of sugar substitutes, this study selected mannitol and erythritol as representatives. Firstly, PXRD and Raman techniques were used to determine the crystal structure and purity of mannitol and erythritol. Then, the THz time-domain spectroscopy (THz-TDS) system was employed to measure the spectral properties of the two sugar substitutes. Additionally, density functional theory (DFT) was utilized to simulate the crystal configurations of mannitol and erythritol. The experimental results showed good agreement with the simulation results. Finally, microfluidic chip technology was used to measure the THz spectroscopic properties of the two sugar substitutes in solution. A comparison was made between their solid state and aqueous solution state, revealing a strong correlation between the THz spectra of the two sugar substitutes in both states. Additionally, it was found that the THz spectrum of a substance in solution is related to its concentration. This study provides a reference for the analysis of sugar substitutes.

14.
Biophys J ; 122(24): 4656-4669, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37974397

RESUMO

Serine integrases promote the recombination of two complementary DNA sequences, attP and attB, to create hybrid sequences, attL and attR. The reaction is unidirectional in the absence of an accessory protein called recombination directionality factor. We utilized tethered particle motion (TPM) experiments to investigate the reaction behaviors of two model serine integrases from Listeria innocua phage LI and Streptomyces coelicolor phage C31. Detailed kinetic analyses of wild-type and mutant proteins were carried out to verify the mechanisms of recombination directionality. In particular, we assessed the influence of a coiled-coil motif (CC) that is conserved in the C-terminal domain of serine integrases and is an important prerequisite for efficient recombination. Compared to wild type, we found that CC deletions in both serine integrases reduced the overall abundance of integrase (Int) att-site complexes and favored the formation of nonproductive complexes over recombination-competent complexes. Furthermore, the rate at which CC mutants formed productive synaptic complexes and disassembled aberrant nonproductive complexes was significantly reduced. It is notable that while the φC31 Int CC is essential for recombination, the LI Int CC plays an auxiliary role for recombination to stabilize protein-protein interactions and to control the directionality of the reaction.


Assuntos
Bacteriófagos , Recombinases , Recombinases/genética , Serina/metabolismo , Sítios de Ligação Microbiológicos , Recombinação Genética , Integrases/genética , Integrases/metabolismo , Bacteriófagos/genética
15.
J Am Chem Soc ; 145(36): 19490-19495, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638874

RESUMO

We report the iridium-catalyzed, stereoselective conversion of secondary alcohols or ketones to anti-1,3-diols by the silylation of secondary C-H bonds γ to oxygen and oxidation of the resulting oxasilolane. The silylation of secondary C-H bonds in secondary silyl ethers derived from alcohols or ketones is enabled by a catalyst formed from a simple bisamidine ligand. The silylation occurs with high selectivity at a secondary C-H bond γ to oxygen over distal primary or proximal secondary C-H bonds. Initial mechanistic investigations suggest that the source of the newly achieved reactivity is a long catalyst lifetime resulting from the high binding constant of the strongly electron-donating bisamidine ligand.

16.
J Am Chem Soc ; 145(50): 27415-27423, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38078702

RESUMO

Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.

17.
J Synchrotron Radiat ; 30(Pt 4): 815-821, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145138

RESUMO

An in-house designed transmission X-ray microscopy (TXM) instrument has been developed and commissioned at beamline BL18B of the Shanghai Synchrotron Radiation Facility (SSRF). BL18B is a hard (5-14 keV) X-ray bending-magnet beamline recently built with sub-20 nm spatial resolution in TXM. There are two kinds of resolution mode: one based on using a high-resolution-based scintillator-lens-coupled camera, and the other on using a medium-resolution-based X-ray sCMOS camera. Here, a demonstration of full-field hard X-ray nano-tomography for high-Z material samples (e.g. Au particles, battery particles) and low-Z material samples (e.g. SiO2 powders) is presented for both resolution modes. Sub-50 nm to 100 nm resolution in three dimensions (3D) has been achieved. These results represent the ability of 3D non-destructive characterization with nano-scale spatial resolution for scientific applications in many research fields.


Assuntos
Dióxido de Silício , Síncrotrons , Raios X , China , Tomografia por Raios X
18.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32770190

RESUMO

In drug development, preclinical safety and pharmacokinetics assessments of candidate drugs to ensure the safety profile are a must. While in vivo and in vitro tests are traditionally used, experimental determinations have disadvantages, as they are usually time-consuming and costly. In silico predictions of these preclinical endpoints have each been developed in the past decades. However, only a few web-based tools have integrated different models to provide a simple one-step platform to help researchers thoroughly evaluate potential drug candidates. To efficiently achieve this approach, a platform for preclinical evaluation must not only predict key ADMET (absorption, distribution, metabolism, excretion and toxicity) properties but also provide some guidance on structural modifications to improve the undesired properties. In this review, we organized and compared several existing integrated web servers that can be adopted in preclinical drug development projects to evaluate the subject of interest. We also introduced our new web server, Virtual Rat, as an alternative choice to profile the properties of drug candidates. In Virtual Rat, we provide not only predictions of important ADMET properties but also possible reasons as to why the model made those structural predictions. Multiple models were implemented into Virtual Rat, including models for predicting human ether-a-go-go-related gene (hERG) inhibition, cytochrome P450 (CYP) inhibition, mutagenicity (Ames test), blood-brain barrier penetration, cytotoxicity and Caco-2 permeability. Virtual Rat is free and has been made publicly available at https://virtualrat.cmdm.tw/.


Assuntos
Desenvolvimento de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Modelos Biológicos , Farmacocinética , Software , Animais , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos , Humanos , Ratos
19.
Chemistry ; 29(44): e202301073, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37212544

RESUMO

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR2 (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal -+ PPh2 Me groups exhibits a long absorption wavelength up to λabs =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.01). In turn, the introduction of a P-heterocyclic acceptor substantially narrowed the optical bandgap and improved the efficiency of fluorescence. In particular, the phospha-spiro moiety allowed to attain NIR emission (797 nm in dichloromethane) with fluorescence efficiency as high as Φ=0.12. The electron-accepting property of the phospha-spiro constituent outperformed that of the monocyclic and terminal phosphonium counterparts, illustrating a promising direction in the design of novel charge-transfer chromophores.

20.
Biomacromolecules ; 24(1): 481-488, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36512327

RESUMO

Protein aggregation is an obstacle for the development of new biopharmaceuticals, presenting challenges in shipping and storage of vital therapies. Though a variety of materials and methods have been explored, the need remains for a simple material that is biodegradable, nontoxic, and highly efficient at stabilizing protein therapeutics. In this work, we investigated zwitterionic polypeptides prepared using a rapid and scalable polymerization technique and conjugated to a supramolecular macrocycle host, cucurbit[7]uril, for the ability to inhibit aggregation of model protein therapeutics insulin and calcitonin. The polypeptides are based on the natural amino acid methionine, and zwitterion sulfonium modifications were compared to analogous cationic and neutral structures. Each polymer was end-modified with a single cucurbit[7]uril macrocycle to afford supramolecular recognition and binding to terminal aromatic amino acids on proteins. Only conjugates prepared from zwitterionic structures of sufficient chain lengths were efficient inhibitors of insulin aggregation and could also inhibit aggregation of calcitonin. This polypeptide exhibited no cytotoxicity in human cells even at concentrations that were five-fold of the intended therapeutic regime. We explored treatment of the zwitterionic polypeptides with a panel of natural proteases and found steady biodegradation as expected, supporting eventual clearance when used as a protein formulation additive.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Estabilidade Proteica , Humanos , Hidrocarbonetos Aromáticos com Pontes/química , Calcitonina/química , Insulinas/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA