Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Remote Sens Environ ; 205: 85-99, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33100408

RESUMO

An accurate temporal and spatial characterization of errors is required for the efficient processing, evaluation, and assimilation of remotely-sensed surface soil moisture retrievals. However, empirical evidence exists that passive microwave soil moisture retrievals are prone to periodic artifacts which may complicate their application in data assimilation systems (which commonly treat observational errors as being temporally white). In this paper, the link between such temporally-periodic errors and spatial land surface heterogeneity is examined. Both the synthetic experiment and site-specified cases reveal that, when combined with strong spatial heterogeneity, temporal periodicity in satellite sampling patterns (associated with exact repeat intervals of the polar-orbiting satellites) can lead to spurious high frequency spectral peaks in soil moisture retrievals. In addition, the global distribution of the most prominent and consistent 8-day spectral peak in the Advanced Microwave Scanning Radiometer - Earth Observing System soil moisture retrievals is revealed via a peak detection method. Three spatial heterogeneity indicators - based on microwave brightness temperature, land cover types, and long-term averaged vegetation index - are proposed to characterize the degree to which the variability of land surface is capable of inducing periodic error into satellite-based soil moisture retrievals. Regions demonstrating 8-day periodic errors are generally consistent with those exhibiting relatively higher heterogeneity indicators. This implies a causal relationship between spatial land surface heterogeneity and temporal periodic error in remotely-sensed surface soil moisture retrievals.

2.
Opt Express ; 21(5): 5575-81, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482129

RESUMO

Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs' constituent elements are commensurate with the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.

3.
Opt Express ; 19(12): 11018-33, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716331

RESUMO

By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields ranging from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.

4.
Opt Express ; 19(7): 6354-65, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451663

RESUMO

By offering effective modal volumes significantly less than a cubic wavelength, slot-waveguide cavities offer a new in-road into strong atom-photon coupling in the visible regime. Here we explore two-dimensional arrays of coupled slot cavities which underpin designs for novel quantum emulators and polaritonic quantum phase transition devices. Specifically, we investigate the lateral coupling characteristics of diamond-air and GaP-air slot waveguides using numerically-assisted coupled-mode theory, and the longitudinal coupling properties via distributed Bragg reflectors using mode-propagation simulations. We find that slot-waveguide cavities in the Fabry-Perot arrangement can be coupled and effectively treated with a tight-binding description, and are a suitable platform for realizing Jaynes-Cummings-Hubbard physics.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teoria Quântica , Espalhamento de Radiação
5.
Opt Express ; 17(9): 7295-303, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19399106

RESUMO

To take existing quantum optical experiments and devices into a more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of tom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect. We show that one can achieve increased single-photon Rabi frequencies of order O(10(11)) rad s(-1) in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teoria Quântica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Opt Express ; 16(9): 6240-50, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545327

RESUMO

We analyze a nitrogen-vacancy (NV-) colour centre based single photon source based on cavity Purcell enhancement of the zero phonon line and suppression of other transitions. Optimal performance conditions of the cavity-centre system are analyzed using Master equation and quantum trajectory methods. By coupling the centre strongly to a high-finesse optical cavity [Q approximately O(10(4) - 10(5)), V approximately lambda (3)] and using sub-picosecond optical excitation the system has striking performance, including effective lifetime of 70 ps, linewidth of 0.01 nm, near unit single photon emission probability and small [O(10(-5))] multi-photon probability.


Assuntos
Nitrogênio/química , Fótons , Simulação por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA