Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233064

RESUMO

Cadmium (Cd) is one of the toxic heavy metals found widely in the environment. Skin is an important target organ of Cd exposure. However, the adverse effects of Cd on human skin are still not well known. In this study, normal human skin keratinocytes (HaCaT cells) were studied for changes in cell viability, morphology, DNA damage, cycle, apoptosis, and the expression of endoplasmic reticulum (ER) stress-related genes (XBP-1, BiP, ATF-4, and CHOP) after exposure to Cd for 24 h. We found that Cd decreased cell viability in a concentration-dependent manner, with a median lethal concentration (LC50) of 11 µM. DNA damage induction was evidenced by upregulation of the level of γ-H2AX. Furthermore, Cd induced G0/G1 phase cell cycle arrest and apoptosis in a dose-dependent manner and upregulated the mRNA levels of ER stress biomarker genes (XBP-1, BiP, ATF4, and CHOP). Taken together, our results showed that Cd induced cytotoxicity and DNA damage in HaCaT cells, eventually resulting in cell cycle arrest in the G0/G1 phase and apoptosis. In addition, ER stress may be involved in Cd-induced HaCaT apoptosis. Our data imply the importance of reducing Cd pollution in the environment to reduce its adverse impacts on human skin.


Assuntos
Cádmio , Estresse do Retículo Endoplasmático , Apoptose , Cádmio/toxicidade , Humanos , Queratinócitos , RNA Mensageiro
2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430782

RESUMO

Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 µg/mL for 24 h, with an IC50 of 275 µg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 µg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-ß-galactosidase activity and related proinflammatory cytokine IL-1ß and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.


Assuntos
Retardadores de Chama , Envelhecimento da Pele , Humanos , Senescência Celular , Retardadores de Chama/toxicidade , Queratinócitos/metabolismo , Compostos Organofosforados/toxicidade , Compostos Organofosforados/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Sci Total Environ ; 878: 162942, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940749

RESUMO

The spatial distribution and pollution level of heavy metal(loid)s in soil (0-6 m) from a typical industrial region in Jiangmen City, Southeast China was investigated. Their bioaccessibility, health risk, and human gastric cytotoxicity in topsoil were also evaluated using an in vitro digestion/human cell model. The average concentrations of Cd (87.52 mg/kg), Co (106.9 mg/kg), and Ni (1007 mg/kg) exceeded the risk screening values. The distribution profiles of metal(loid)s showed a downward migration trend to reach a depth of 2 m. The highest contamination was found in topsoil (0-0.5 m), with the concentrations of As, Cd, Co, and Ni being 46.98, 348.28, 317.44, and 2395.60 mg/kg, respectively, while Cd showed the highest bioaccessibility in the gastric phase (72.80 %), followed by Co (21.08 %), Ni (18.27 %), and As (5.26 %) and unacceptable carcinogenic risk. Moreover, the gastric digesta of topsoil suppressed the cell viability and triggered cell apoptosis, evidenced by disruption of mitochondrial transmembrane potential and increase of Cytochrome c (Cyt c) and Caspases 3/9 mRNA expression. Bioaccessible Cd in topsoil was responsible for those adverse effects. Our data suggest the importance to reduce Cd in the soil to decrease its adverse impacts on the human stomach.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio/toxicidade , Monitoramento Ambiental , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , China , Solo , Estômago/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA