Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Commun Signal ; 22(1): 306, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831454

RESUMO

BACKGROUND: Dysregulation in histone acetylation, a significant epigenetic alteration closely associated with major pathologies including cancer, promotes tumorigenesis, inactivating tumor-suppressor genes and activating oncogenic pathways. AMP-activated protein kinase (AMPK) is a cellular energy sensor that regulates a multitude of biological processes. Although a number of studies have identified the mechanisms by which AMPK regulates cancer growth, the underlying epigenetic mechanisms remain unknown. METHODS: The impact of metformin, an AMPK activator, on cervical cancer was evaluated through assessments of cell viability, tumor xenograft model, pan-acetylation analysis, and the role of the AMPK-PCAF-H3K9ac signaling pathway. Using label-free quantitative acetylproteomics and chromatin immunoprecipitation-sequencing (ChIP) technology, the activation of AMPK-induced H3K9 acetylation was further investigated. RESULTS: In this study, we found that metformin, acting as an AMPK agonist, activates AMPK, thereby inhibiting the proliferation of cervical cancer both in vitro and in vivo. Mechanistically, AMPK activation induces H3K9 acetylation at epigenetic level, leading to chromatin remodeling in cervical cancer. This also enhances the binding of H3K9ac to the promoter regions of multiple tumor suppressor genes, thereby promoting their transcriptional activation. Furthermore, the absence of PCAF renders AMPK activation incapable of inducing H3K9 acetylation. CONCLUSIONS: In conclusion, our findings demonstrate that AMPK mediates the inhibition of cervical cancer growth through PCAF-dependent H3K9 acetylation. This discovery not only facilitates the clinical application of metformin but also underscores the essential role of PCAF in AMPK activation-induced H3K9 hyperacetylation.


Assuntos
Proteínas Quinases Ativadas por AMP , Proliferação de Células , Histonas , Metformina , Neoplasias do Colo do Útero , Fatores de Transcrição de p300-CBP , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Humanos , Acetilação/efeitos dos fármacos , Feminino , Histonas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Animais , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/genética , Metformina/farmacologia , Camundongos , Camundongos Nus , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos
2.
Mol Cancer ; 22(1): 171, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853413

RESUMO

Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Diferenciação Celular , Biomarcadores/metabolismo , Células-Tronco Neoplásicas/metabolismo , Resultado do Tratamento , Microambiente Tumoral
3.
Biol Pharm Bull ; 45(4): 409-420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370265

RESUMO

Ginkgolide B (GKB) is a well-established neuroprotectant for acute ischemia stroke. However, its cerebral exposure and real-time response remain elusive in acute ischemia/reperfusion stage, and it hinders its usage in therapeutic window of ischemia stroke. Therefore, we investigate the exposure-response relationship of GKB (10 mg/kg, intravenously (i.v.)) as well as its neuroprotective mechanism in acute ischemia/reperfusion rats. Cerebral and plasma exposure of GKB is comparatively explored in both of normal rats and acute ischemia/reperfusion rats. Correspondingly, neurological function and brain jury indexes were assessed at each time point, and superoxide dismutase (SOD), malondialdehyde (MDA), platelet activator factor (PAF) and thromboxane A2 (TXA2) are indexed as pharmacological response to GKB. Exposure-response relationships are analyzed by using linear regression. Additionally, cerebral expressions of proteins in PAF-regulated pathways are tested at each time point. Results show cerebral and plasma concentrations of GKB are much higher in acute ischemia/reperfusion rats than those in normal rats. Cerebral infarction, neurological function (NF) score, abnormal PAF and excessive MDA are significantly alleviated in 24 h after GKB injection, and PAF is reduced in exposure-response manner with significant concentration-response relationship (R2 = 0.9123). Regarding downstream proteins in intracellular PAF-regulated pathway, GKB progressively inhibits Bax, Caspase-3, p-p65 and p-IKK, while gradually restoring LC3B, p62 and p-mammalian target of rapamycin (mTOR) to the basic level within 24 h. Conclusively, GKB exhibits greater cerebral exposure in acute ischemia/reperfusion rats and neuroprotective effect through reducing PAF in exposure-response manner and mediating PAF-regulated intracellular signaling pathways. Our finding highlights clinical implications of GKB in therapeutic time window of ischemic stroke.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ginkgolídeos , Lactonas , Mamíferos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
Phytother Res ; 34(10): 2649-2664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32281697

RESUMO

Inflammatory bowel disease (IBD) is a chronic autoimmune disease associated with various risk factors. Pycnoporus sanguineus (L.) Murrill is a saprotrophic fungus used worldwide for its industrial and medical purposes. Here, polysaccharide from P. sanguineus (PPS) was explored for its antiinflammatory potential in a murine colitis model of IBD induced by dextran sulfate sodium (DSS). PPS ameliorated the colitis as manifested by the lowered disease activity index (DAI), prolonged colon, and reduced serum lipopolysaccharide (LPS). PPS recovered the histological lesion by upregulating the expressions of Zonula occludens-1 (ZO-1), E-cadherin, and proliferating cell nuclear antigen (PCNA). PPS inhibited the helper T cells (Th)-mediated immune response by decreasing the proportions of Th cells (including Th2 cells, Th17 cells, and regulatory T cells), which was accompanied with reductions on myeloperoxidase (MPO) activity and releases of several interleukins and chemokines within the colon. Moreover, PPS exhibited an evident inhibition on autophagy, in which the ratio of light chain 3 (LC3) II/I was declined, while the expression of p62 and Beclin-1 was increased. The present study highlighted important clinical implications for the treatment application of PPS against IBD, which relies on the regulation of Th cells repertoire and autophagy suppression to restore epithelium barrier.


Assuntos
Autofagia/efeitos dos fármacos , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Doenças Inflamatórias Intestinais/induzido quimicamente , Polissacarídeos/metabolismo , Pycnoporus/química , Linfócitos T Reguladores/metabolismo , Animais , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
BMC Complement Altern Med ; 15: 238, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179287

RESUMO

BACKGROUND: The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C. METHODS: The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. RESULTS: The IC50 of ASB against JBU and HPU was 3.28±0.13 mM and 3.17±0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of Ki=2.86×10(-3) mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.33×10(-4) mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap. CONCLUSIONS: ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for the treatment of urease-related diseases.


Assuntos
Diterpenos/farmacologia , Sulfitos/farmacologia , Urease , Canavalia/enzimologia , Cinética , Simulação de Acoplamento Molecular , Urease/química , Urease/efeitos dos fármacos , Urease/metabolismo
7.
Phytother Res ; 29(1): 67-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25243578

RESUMO

The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection.


Assuntos
Antibacterianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Lamiaceae/química , Sesquiterpenos/farmacologia , Urease/antagonistas & inibidores , Amoxicilina/farmacologia , Helicobacter pylori/enzimologia , Testes de Sensibilidade Microbiana
8.
Neurochem Res ; 39(11): 2197-210, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25208641

RESUMO

Ischemic stroke has been confirmed to cause neuronal injury due to its insufficient supply of glucose and oxygen to brain tissue. Previous research has shown that oxidative stress, a result of excessive accumulation of reactive oxygen species (ROS), relates to pathophysiology of ischemic stroke, and causes oxidative damage to biomolecules, eventually leading to programmed cell death. Meanwhile, apigenin has been shown to exhibit antioxidant, anti-inflammatory, anti-cancer properties and neuroprotective action. Hence, this study was to investigate the potential mechanisms underlying the neural protection of apigenin on oxygen and glucose deprivation/reperfusion (OGD/R) induced neuronal injury in differentiated PC12 cells. Cells were pretreated with apigenin for 6 h, and then subjected to OGD for 12 h followed by reperfusion for 24 h. The results showed that OGD/R significantly decreased cell viability, mitochondrial membrane potential, mRNA levels of antioxidant and detoxifying enzymes and Nrf2 protein expression, while elevated the release of LDH, cell apoptosis, intracellular ROS level, P53 protein expression and upregulated its downstream genes in PC12 cells. However, apigenin effectively inhibited these undesirable changes induced by OGD/R. Our findings demonstrate that this compound attenuates OGD/R induced neuronal injury mainly by virtue of its anti-apoptosis and antioxidative properties via affecting the expression of Nrf2 and P53, and their downstream target gene transcription.


Assuntos
Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Oxigênio/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Gut Microbes ; 16(1): 2347757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773738

RESUMO

Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Microbioma Gastrointestinal , Indóis , Prevotella , Ubiquitina-Proteína Ligases , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Animais , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Indóis/metabolismo , Indóis/farmacologia , Prevotella/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Progressão da Doença , Camundongos Endogâmicos BALB C , Triptofano/metabolismo , Linhagem Celular Tumoral
10.
BMC Complement Altern Med ; 13: 119, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23721522

RESUMO

BACKGROUND: A traditional Chinese Medicine (TCM) formula, HZJW, has been applied in clinics in China for gastrointestinal disorders. However, the therapeutic mechanism underlying its efficacy and safety remained to be defined. The present investigation was undertaken to evaluate the formula HZJW for its gastroprotective potential, possible effect on Helicobacter pylori along with safety to justify its anti-ulcer action and safe clinical application. METHODS: The gastroduodenal cytoprotective potential was evaluated in rodent experimental models (HCl/Ethanol and NSAID-induced ulcer protocols). The anti-H. pylori property was assessed by agar dilution assay in vitro and analysis in vivo including rapid urease test, immunogold test and histopathology. For toxicity assessment, acute toxicity study was performed according to fixed dose procedure with a single oral administration of HZJW to mice. In the oral chronic toxicity, rats (80 males, 80 females) were administrated HZJW orally in 0, 1000, 2500, or 5000 mg/kg/day doses for 26 weeks (n = 40/group of each sex). Clinical signs, mortality, body weights, feed consumption, ophthalmology, hematology, serum biochemistry, gross findings, organ weights and histopathology were examined at the end of the 13- and 26-week dosing period, as well as after the 4-week recovery period. RESULTS: In the HCl/Ethanol-induced ulcer model, it was observed that oral administration with HZJW (260, 520 and 1040 mg/kg) and ranitidine (250 mg/kg) significantly reduced the ulcerative lesion index (116.70 ± 36.4, 102.20 ± 18.20, 84.10 ± 12.1 and 73.70 ± 16.70) in a dose-dependent manner, respectively, with respect to control group (134.10 ± 31.69). Significant inhibition was also observed in ulcerative index from aspirin-induced ulcer model, with decreases of 35.40 ± 5.93, 31.30 ± 8.08, 26.80 ± 8.27and 20.40 ± 6.93 for the groups treated with HZJW and ranitidine, in parallel to controls (41.60 ± 10.80). On the other hand, treatment with HZJW efficaciously eradicated H. pylori in infected mice in rapid urease test (RUT) and immunogold antibody assay, as further confirmed by reduction of H. pylori presence in histopathological analysis. In the in vitro assay, MICs for HZJW and amoxicillin (positive control) were 125 and 0.12 µg/mL respectively. The LD50 of HZJW was over 18.0 g/kg for mice. No drug-induced abnormalities were found as clinical signs, body weight, food consumption, hematology, blood biochemistry, ophthalmology and histopathology results across three doses. No target organ was identified. The No Observed Adverse Effect Level (NOAEL) of HZJW was determined to be 5,000 mg/kg/day for both sexes, a dose that was equivalent to 50 times of human dose. CONCLUSIONS: These results suggested the efficacy and safety of HZJW in healing peptic ulcer and combating H. pylori, which corroborated their conventional indications and contributed to their antiulcer pharmacological validation, lending more credence to its clinical application for the traditional treatment of stomach complaints symptomatic of peptic ulcer disease (PUD). HZJW might have the potential for further development as a safe and effective alternative/complementary to conventional medication in treating gastrointestinal (GI) disorders.


Assuntos
Antibacterianos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/efeitos dos fármacos , Úlcera Péptica/prevenção & controle , Administração Oral , Animais , Antibacterianos/efeitos adversos , Química Farmacêutica , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Úlcera Péptica/tratamento farmacológico , Úlcera Péptica/microbiologia , Ratos , Ratos Sprague-Dawley
11.
ScientificWorldJournal ; 2013: 879501, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24198731

RESUMO

Baicalin (BA) is the principal component of Radix Scutellariae responsible for its pharmacological activity. In this study, kinetics and mechanism of inhibition by BA against jack-bean urease were investigated for its therapeutic potential. It was revealed that the IC50 of BA against jack-bean urease was 2.74 ± 0.51 mM, which was proved to be a competitive and concentration-dependent inhibition with slow-binding progress curves. The rapid formation of initial BA-urease complex with an inhibition constant of K(i) = 3.89 × 10⁻³ mM was followed by a slow isomerization into the final complex with an overall inhibition constant of K(i)* = 1.47 × 10⁻4 mM. High effectiveness of thiol protectors against BA inhibition indicated that the strategic role of the active-site sulfhydryl group of the urease was involved in the blocking process. Moreover, the inhibition of BA was proved to be reversible due to the fact that urease could be reactivated by dithiothreitol but not reactant dilution. Molecular docking assay suggested that BA made contacts with the important activating sulfhydryl group Cys-592 residues and restricted the mobility of the active-site flap. Taken together, it could be deduced that BA was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for treatments on urease-related diseases.


Assuntos
Fabaceae/enzimologia , Flavonoides/metabolismo , Urease/metabolismo , Cinética
12.
MedComm (2020) ; 4(2): e221, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36860568

RESUMO

Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.

13.
J Sep Sci ; 35(17): 2193-202, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22888096

RESUMO

A simple and sensitive method was developed and validated for profiling and simultaneous quantitation of seven alkaloids (6-hydroxy-ß-carboline-1-carboxylic acid, ß-carboline-1-carboxylic acid, ß-carboline-1-propanoic acid, 3-methylcanthin-5,6-dione, 5-hydroxy-4-methoxycanthin-6-one, 1-methoxycarbony-ß-carboline, and 4,5-dimethoxycanthin-6-one) in Picrasma quassioide grown in different locations by high-performance liquid chromatography with photodiode array detection. The analysis was conducted on a Phenomenex Gemini C(18) column at 35°C with mobile phase of 25 mM aqueous ammonium acetate (pH 4.0, adjusted by glacial acetate acid) and acetonitrile. A common fingerprint chromatograph under 254 nm consisting of 27 peaks was constructed for the evaluation of the similarities among 31 P. quassioide samples. Samples from Guangdong and Guangxi Provinces were found to be within group linkage and showed significant difference from that of Jiangxi Province origin by using principal component analysis and hierarchical clustering analysis. In addition, the seven alkaloids were identified by electrospray ionization mass spectrometry and comparing with reference standards and literature data. All of them were determined simultaneously using the established HPLC method. This rapid and effective analytical method could be employed for quality assessment of P. quassioide, as well as pharmaceutical products containing this herbal material.


Assuntos
Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Picrasma/química , China , Cromatografia Líquida de Alta Pressão/instrumentação , Medicamentos de Ervas Chinesas/normas , Controle de Qualidade
14.
Phytomedicine ; 100: 154052, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344714

RESUMO

BACKGROUND: The clinical treatment of ulcerative colitis (UC) is limited. A traditional Chinese medicinal formula, Huangqin decoction (HQD), is chronicled in Shang Han Lun and is widely used to ameliorate gastrointestinal disorders, such as UC; however, its mechanism is yet to be clarified. PURPOSE: The present study aimed to investigate the effect of HQD on 7-day colitis induced by 3% dextran sulfate sodium (DSS) in mice and further explore the inhibitory effect of metabolites on DSS-damaged FHC cells. METHODS: The therapeutic efficacy of HQD was evaluated in a well-established DSS-induced colitis mice model. The clinical symptoms were analyzed, and biological samples were collected for microscopic examination, metabolomics, metagenomics, and the evaluation of the epithelial barrier function. The mechanism of metabolites regulated by HQD was evaluated in the DSS-induced FHC cell damage model. The samples were collected to detect the physiological functions of the cells. RESULTS: HQD suppressed the inflammation of DSS-induced colitis in vivo, attenuated DSS-induced clinical manifestations, reversed colon length reduction, and reduced histological injury. After HQD treatment, the DSS-induced gut dysbiosis was modulated, and the gut microbiota achieved a new equilibrium state. In addition, HQD activated the mTOR signaling pathway by upregulating amino acid metabolism. Significant phosphorylation of S6 and 4E-BP1 ameliorated intestinal epithelial barrier dysfunction. Moreover, HQD-regulated metabolites protected the epithelial barrier integrity by inhibiting DSS-induced apoptosis of FHC cells and regulating the proteins affecting apoptosis and cell-cell junction. CONCLUSIONS: These findings indicated that the mechanism of HQD was related to regulating the gut microbiota and amino acid metabolism, activating the mTOR signaling pathway, and protecting the intestinal mucosal barrier integrity.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Aminoácidos/metabolismo , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Scutellaria baicalensis/química , Serina-Treonina Quinases TOR/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 36(13): 1739-43, 2011 Jul.
Artigo em Zh | MEDLINE | ID: mdl-22032136

RESUMO

OBJECTIVE: To establish the HPLC chromatographic fingerprint of Kumu injection and to simultaneously determine the contents of three beta-carboline alkaloids, comprehensively evaluating the immanent quality of Kumu injection. METHOD: The chromatographic analysis was performed on a Phenomenex Gemini C18 ( 4.6 mm x 250 mm, 5 microm) column with the gradient elution solvent system composed of methanol and 30 mmol x L(-1) aqueous ammonium acetate (adjusted with glacial acetic acid to pH 4.5). Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004 A) was used in data analysis. RESULT: Sixteen co-possessing peaks were selected as the fingerprints of Kumu injection, and 7 peaks were identified by chemical reference substances. There were good similarities between the standard fingerprint chromatogram and each fingerprint chromatogram from the eleven samples for their similarity coefficients were not less than 0.9. Three kinds of beta-carboline alkaloids were separated well. The correlation coefficients were 0.999 9. The linear ranges of three components were 0.020 0-0.300 0, 0.102 0-1.530 0, 0.015 2-0. 228 0 microg, respectively, and the average recoveries ranged were from 99.5% to 102%. CONCLUSION: The method of fingerprint combined with quantitative analysis is sensitive, selective, and provide scientific basis for quality control of Kumu Injection.


Assuntos
Alcaloides/análise , Carbolinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Estabilidade de Medicamentos , Injeções , Soluções Farmacêuticas , Picrasma/química , Plantas Medicinais/química , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Eur J Pharmacol ; 908: 174399, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34331954

RESUMO

Vorinostat is a histone deacetylase inhibitor (HDACi) that was demonstrated in our previous study to inhibit the proliferation, migration, and invasion of cervical cancer cells by regulating the PI3K/Akt signaling pathway. However, the molecular mechanism of vorinostat in cervical cancer treatment remains to be further elucidated. A nude mouse xenograft model was established to analyze the antitumor effect of vorinostat in vivo. The combination of iTRAQ-based proteomics and parallel reaction monitoring (PRM) technology has proven to be an efficient and reliable method to identify potential targets for cancer chemotherapy. In this study, 254 differentially expressed proteins in vorinostat-treated cervical cancer cells, among which 180 were upregulated and 74 were downregulated, were identified by using an iTRAQ-based proteomic strategy. Subsequent bioinformatic and PRM analysis of these differentially expressed proteins indicated that UBE2C is a promising target of vorinostat in the inhibition of cervical cancer cell proliferation. We confirmed that the expression of endogenous UBE2C in cervical cancer cell lines was significantly higher than that in normal cervical epithelial cell lines. Additionally, we found that vorinostat downregulated the expression of UBE2C, SQSTM1/p62, N-cadherin, vimentin and upregulated E-cadherin in SiHa and HeLa cells. Our results also showed that vorinostat can downregulate the expression of SQSTM1/p62, N-cadherin, and vimentin during the treatment of cervical cancer cells by regulating UBE2C, while upregulating the expression of E-cadherin. In conclusion, vorinostat reverses epithelial-mesenchymal transition by targeting UBE2C and controls the proliferation of cervical cancer cells through the ubiquitination pathway. UBE2C can be used as a promising target for the development of vorinostat treatment strategies.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias do Colo do Útero , Animais , Feminino , Células HeLa , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Vorinostat
17.
J Ethnopharmacol ; 267: 113445, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a relapsing inflammatory disease that still demands for effective remedies due to various adverse effects of the current principal treatments. Centella asiatica is a traditional medical herb with long application history in anti-inflammation. AIM OF THE STUDY: To explore the anti-inflammatory effect and possible mechanism of C. asiatica ethanol extract (CA) in a murine colitis model induced by dextran sulfate sodium (DSS). MATERIALS AND METHODS: CA was analyzed by high performance liquid chromatograph (HPLC). The colitis model was induced by free access to 3% DSS in distilled water for 7 days. CA (100, 200, and 400 mg/kg) and 5-aminosalicylic acid (5-ASA, 400 mg/kg) were administrated by gavage during the 7-day DSS challenge. At the end of experiment, mice were sacrificed and the brain, colon and cecum contents were harvested for analysis. Colitis was evaluated by disease activity index (DAI), colon length and colon lesion macroscopic score with hematoxylin-eosin staining. Myeloperoxidase (MPO) activity in colon and 5-hydroxytryptamine (5-HT) in brain were determined by ELISA. Tight junction protein expressions (ZO-1, E-Cadherin, Claudin-1) and c-Kit in colon were assessed by western blot and immunohistochemistry, respectively. Microbiota of cecum content was analyzed by 16S rRNA sequencing. RESULTS: Data showed that with recovery on the colon length and histological structure, CA prominently decreased DAI and macroscopic score for lesion in the suffering mice. CA relieved the colitis by suppressing inflammatory cell infiltration with decreased MPO activity in the colon, and up-regulated the expression of tight junction protein (ZO-1, E-cadherin) to enhance the permeability of intestinal mucosa. Moreover, CA restored intestinal motility by promoting c-Kit expression in the colon and 5-HT in the brain. Moreover, CA was able to reshape the gut microbiota in the suffering mice. It increased the α-diversity and shifted the community by depleting the colitis-associated genera, Helicobacter, Jeotgalicoccus and Staphylococcus, with impact on several metabolism signaling pathways, which possibly contributes to the renovation on the impaired intestinal mucosal barrier. CONCLUSIONS: CA displayed the anti-inflammatory activity against the DSS-induced colitis, which would possibly rely on the restoration on mucosa barrier and gut microbiota homeostasis, highlights a promising application of C. asiatica in the clinical treatment of UC.


Assuntos
Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Colite Ulcerativa/prevenção & controle , Colo/efeitos dos fármacos , Fármacos Gastrointestinais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Bactérias/crescimento & desenvolvimento , Centella , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Etanol/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos BALB C , Permeabilidade , Serotonina/metabolismo , Solventes/química , Proteínas de Junções Íntimas/metabolismo
18.
Front Pharmacol ; 12: 727082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658867

RESUMO

Triple-negative breast cancer (TNBC) has been acknowledged as an aggressive disease with worst prognosis, which requires endeavor to develop novel therapeutic agents. Bruceae fructus oil (BO), a vegetable oil derived from the fruit of Brucea javanica (L.) Merr., is an approved marketable drug for the treatment of cancer in China for several decades. Despite that the anti-breast cancer activity of several quassinoids derived from B. javanica has been found, it was the first time that the potential of BO against TNBC was revealed. Although BO had no cytotoxicity on TNBC cell lines in vitro, the oral administration of BO exhibited a gut microbiota-dependent tumor suppression without toxicity on the non-targeted organs in vivo. By metagenomics and untargeted metabolomics, it was found that BO not only altered the composition and amino acid metabolism function of gut microbiota but also regulated the host's amino acid profile, which was in accordance with the metabolism alternation in gut microbiota. Moreover, the activity of mTOR in tumor was promoted by BO treatment as indicated by the phosphorylation of 4E-binding protein 1 (4E-BP1) and ribosomal protein S6, and hyper-autophagy was consequently restrained. By contrast, the failure of tumor suppression by BO under pseudo germ-free (PGF) condition came with indistinctive changes in autophagy and mTOR activity, implying the critical role of the gut microbiota in BO's anticancer activity. The present study highlighted a promising application of BO against breast cancer with novel efficacy and safety.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33859713

RESUMO

Ganoderma lucidum (Leyss.Fr.) Karst is one of the well-known medicinal macrofungi all over the world, and mounting researches have focused on the polysaccharides derived from the spores of G. lucidum. In the present study, BALB/c mice (n = 8-10) were administered with crude polysaccharides of G. lucidum spores (CPGS) and the refined polysaccharides of G. lucidum spores (RPGS) for 30 days to investigate their effect on the adaptive immune system. Results showed that CPGS and RPGS displayed diverse effects on the lymphocyte activity in the spleen. The splenocyte proliferation activity upon mitogen was suppressed by CPGS and RPGS, while the NK cell's tumor-killing ability was promoted by CPGS. Both CPGS and RPGS could increase the proportion of naïve T cells in thymus, but only RPGS significantly uplifted the percentage of T cells, as well as the T cell subsets, in peripheral blood, and promoted the activation by upregulating the expression of costimulatory factor CD28. Moreover, 16S sequencing results showed that the effects of CPGS and RPGS were closely related to the regulation of gut microbiota. ß-diversity of the microbiome was evidently changed by CPGS and RPGS. The phytoestrogen/polysaccharide-metabolizing bacteria (Adlercreutzia, Parabacteroides, and Prevotella), and an unclassified Desulfovibrionaceae, were remarkably enriched by CPGS or RPGS, and functions involving carbohydrate metabolism, membrane transport, and lipid metabolism were regulated. Moreover, the enrichments of Adlercreutzia, Prevotella, and Desulfovibrionaceae were positively related to the immune regulation by CPGS and RPGS, while that of Parabacteroides displayed a negative correlation. These findings suggested a promising effect of the polysaccharide from sporoderm-broken spore of G. lucidum in immune regulation to promote health control.

20.
Front Genet ; 12: 779195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976014

RESUMO

Background: In recent years, circular RNAs (circRNAs) have been reported to serve as essential regulators in several human cancers. Nevertheless, the function and mechanism of circRNAs in cervical cancer remain elusive. Methods: Flow cytometry assays were performed to measure cell apoptosis and cell cycle. Colony Formation and transwell chamber were performed to measure cell migration and invasion. Double luciferase reporter for gene analysis was used to detect the interaction between hsa-circRNA_0001400, miR-326, and Akt. Relative protein levels were determined by immunoblotting and relative gene levels were determined by quantitative real-time PCR. Tumor Xenograft Modeling was used to evaluate the effect of hsa_circRNA_0001400_siRNA in vivo. Results: In the present study, we showed that hsa_circRNA_0001400 was highly expressed in cervical cancer tissues relative to in matched normal tissue. We found that hsa_circRNA_0001400_siRNA significantly promoted the apoptosis of cervical cancer cells and arrested the cell cycle and migration of cervical cancer cells. We showed that hsa_circRNA_0001400_siRNA can inhibit the protein expression of Akt and that the inhibition of miR-326 could rescue the inhibition of Akt in cervical cancer cells. We found that has-miR-326 was downregulated in cervical cancer tissues and hsa_circRNA_0001400_siRNA could increase the gene expression of has-miR-326. We also observed that hsa_circRNA_0001400_siRNA inhibited the growth and angiogenesis of SiHa xenografts in nude mice. Conclusion: In conclusion, this study provides evidence that the hsa_circRNA_0001400-miR-326-Akt network promotes cervical cancer progression. Notably, our findings demonstrate the novel antitumor effects of hsa_circRNA_0001400_siRNA in cervical cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA