Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Probes ; 76: 101964, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810840

RESUMO

Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.


Assuntos
Neoplasias da Mama , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Exossomos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Receptor Notch1 , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doxorrubicina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Células MCF-7 , Feminino , Receptor Notch1/metabolismo , Receptor Notch1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
J Biochem Mol Toxicol ; 37(8): e23393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37409694

RESUMO

Doxorubicin (DOX), an effective and broad-spectrum anthracycline antibiotic, is widely used in the treatment of numerous malignancies. However, dose-dependent cardiotoxicity limits the clinical application of DOX, and the molecular mechanisms are still unknown. In this study, we used the BK receptor B1/B2 double-knockout (B1B2 -/- ) mice to observe the role of BK receptor in cardiotoxicity induced by DOX and the underlying mechanisms. DOX induced myocardial injury with increased serum levels of AST, CK, and LDH, upregulated tissue expression of bradykinin B1/B2 receptor, FABP4 and iNOS, and downregulated expression of eNOS. However, these altered releases of myocardial enzyme and the expression level of iNOS were significantly prevented in the B1B2-/- mice. We concluded that the activation of both B1 and B2 receptors of BK were involved in the DOX-induced acute myocardial injury, possibly mediated through iNOS signaling pathways.


Assuntos
Cardiotoxicidade , Traumatismos Cardíacos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Receptores da Bradicinina/metabolismo , Receptores da Bradicinina/uso terapêutico , Doxorrubicina/toxicidade , Miocárdio/metabolismo , Transdução de Sinais , Traumatismos Cardíacos/metabolismo , Estresse Oxidativo , Apoptose , Miócitos Cardíacos/metabolismo
3.
J Biochem Mol Toxicol ; 37(6): e23329, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808658

RESUMO

Doxorubicin (DOX), is a high efficiency anthracycline antitumor drug. However, the clinical application of DOX is limited mainly by dose-related adverse drug reactions. Currently, the therapeutic effects of Atorvastatin (ATO) on DOX-induced hepatotoxicity were studied in vivo. The results indicated that DOX impaired hepatic function, as measured by an increased levels of liver weight index and serum concentrations of aspartate transaminase and alanine transaminase, as well as alteration of hepatic histology. In addition, DOX increased the serum levles of triglyceride (TG) and nonestesterified fatty acid. ATO prevented these changes. Mechanical analysis revealed that ATO restored the changes of malondialdehyde, reactive oxygen radical species, glutathione peroxidase and manganese superoxide dismutase. Additionally, ATO inhibited the increased expression levels of nuclear factor-kappa B and interleukin 1ß, hence suppressing inflammation. Meanwhile, ATO inhibited cell apoptosis by dramatically decreasing the Bax/Bcl-2 ratio. In addition, ATO mitigated the lipidtoxicity by inhibiting the adipolysis of TG and accelerating hepatic lipid metabolism. Taken together, the results suggest ATO has therapeutic effect on DOX-induced hepatotoxicity via inhibition of oxidative damage, inflammatory and apoptosis. In addition, ATO attenuates DOX-induced hyperlipidemia via modulation of lipid metabolism.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Atorvastatina/farmacologia , Doxorrubicina/toxicidade , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Apoptose
4.
Acta Pharmacol Sin ; 42(2): 218-229, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32747718

RESUMO

Aconitine (ACO), a main active ingredient of Aconitum, is well-known for its cardiotoxicity. However, the mechanisms of toxic action of ACO remain unclear. In the current study, we investigated the cardiac effects of ACO and mesaconitine (MACO), a structurally related analog of ACO identified in Aconitum with undocumented cardiotoxicity in guinea pigs. We showed that intravenous administration of ACO or MACO (25 µg/kg) to guinea pigs caused various types of arrhythmias in electrocardiogram (ECG) recording, including ventricular premature beats (VPB), atrioventricular blockade (AVB), ventricular tachycardia (VT), and ventricular fibrillation (VF). MACO displayed more potent arrhythmogenic effect than ACO. We conducted whole-cell patch-clamp recording in isolated guinea pig ventricular myocytes, and observed that treatment with ACO (0.3, 3 µM) or MACO (0.1, 0.3 µM) depolarized the resting membrane potential (RMP) and reduced the action potential amplitude (APA) and durations (APDs) in a concentration-dependent manner. The ACO- and MACO-induced AP remodeling was largely abolished by an INa blocker tetrodotoxin (2 µM) and partly abolished by a specific Na+/K+ pump (NKP) blocker ouabain (0.1 µM). Furthermore, we observed that treatment with ACO or MACO attenuated NKP current (INa/K) and increased peak INa by accelerating the sodium channel activation with the EC50 of 8.36 ± 1.89 and 1.33 ± 0.16 µM, respectively. Incubation of ventricular myocytes with ACO or MACO concentration-dependently increased intracellular Na+ and Ca2+ concentrations. In conclusion, the current study demonstrates strong arrhythmogenic effects of ACO and MACO resulted from increasing the peak INa via accelerating sodium channel activation and inhibiting the INa/K. These results may help to improve our understanding of cardiotoxic mechanisms of ACO and MACO, and identify potential novel therapeutic targets for Aconitum poisoning.


Assuntos
Aconitina/análogos & derivados , Aconitina/toxicidade , Arritmias Cardíacas/induzido quimicamente , Cardiotoxicidade/etiologia , Aconitina/isolamento & purificação , Aconitum/química , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/fisiopatologia , Cardiotoxicidade/fisiopatologia , Eletrocardiografia , Cobaias , Masculino , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo
5.
Cancer Cell Int ; 19: 152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164797

RESUMO

BACKGROUND: Recently, lncRNA-Testis developmental related gene 1 (TDRG1) was proved to be a key modulator in reproductive organ-related cancers. The biological role of TDRG1 in cervical cancer (CC) progression remains largely unknown. METHOD: Real-time PCR (qRT-PCR) examined the expression level of TDRG1, microRNA (miR)-326 and MAPK1 mRNA. OS tissues and corresponding relative normal tissues, as well as CC cell lines and normal cell line Ect1/E6E7 were collected to determine the expression of TDRG1 in CC. MTT, colony formation, wound-healing, transwell and flow cytometer assay detected the influence of TDRG1 and miR-326 on CC cells growth, metastasis and apoptosis. Western blot examined proteins level. Bioinformatics, RNA pull-down assay, RNA immunoprecipitation and dual-luciferase reporter assays detected the molecular mechanism of TDRG1 in CC. Xenograft tumour model was established to determine the role of TDRG1 in vivo. RESULTS: The expression of TDRG1 was significantly increased in CC tissues and cell lines compared with normal tissue and normal cell line respectively and its expression was associated with clinicopathological characteristics of CC patients. Knockdown of TDRG1 inhibited the cell proliferation, migration and invasion in Hela and SIHA cells. Moreover, TDRG1 directly interacted with miR-326, and the inhibition effect on cell growth and metastasis induced by TDRG1 siRNA can be abrogated by miR-326 silencing by its inhibitor in Hela and SIHA cells. Further, MAPK1 was proved to be a direct target of miR-326, and its expression was negatively regulated by miR-326 while positively modulated by TDRG1. CONCLUSION: TDRG1 acts as a competing endogenous lncRNA (ceRNA) to modulate MAPK1 by sponging miR-326 in CC, shedding new light on TDRG1-directed diagnostics and therapeutics in CC.

6.
Neurol Sci ; 37(1): 57-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255301

RESUMO

The purpose of this work is to investigate the efficacy of exogenous melatonin in the treatment of sleep disorders in patients with neurodegenerative disease. We searched Pubmed, the Cochrane Library, and ClinicalTrials.gov, from inception to July 2015. We included randomized clinical trials (RCTs) that compared melatonin with placebo and that had the primary aim of improving sleep in people with neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). We pooled data with the weighted mean difference in sleep outcomes. To assess heterogeneity in results of individual studies, we used Cochran's Q statistic and the I (2) statistic. 9 RCTs were included in this research. We found that the treatment with exogenous melatonin has positive effects on sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) in PD patients (MD: 4.20, 95 % CI: 0.92-7.48; P = 0.01), and by changes in PSQI component 4 in AD patients (MD: 0.67, 95 % CI: 0.04-1.30; P = 0.04), but not on objective sleep outcomes in both AD and PD patients. Treatment with melatonin effectively improved the clinical and neurophysiological aspects of rapid eye movement (REM) sleep behavior disorder (RBD), especially elderly individuals with underlying neurodegenerative disorders. This meta-analysis provided some evidence that melatonin improves sleep quality in patients with AD and PD, and melatonin can be considered as a possible sole or add-on therapy in neurodegenerative disorders patients with RBD.


Assuntos
Hipnóticos e Sedativos/uso terapêutico , Melatonina/uso terapêutico , Doenças Neurodegenerativas/complicações , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/tratamento farmacológico , Humanos , Hipnóticos e Sedativos/efeitos adversos , Melatonina/efeitos adversos , Doenças Neurodegenerativas/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Anticancer Drugs ; 26(6): 620-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25756738

RESUMO

N-[4-(4,6-Dimethyl-2-pyrimidinyloxy)-3-methylphenyl]-N'-[2-(dimethylamino)]benzoylurea (SUD) is a novel synthesized benzoylurea derivative. We selected several human cancer cell lines to investigate whether SUD can inhibit the growth of cancer cells. We selected the liver cell line L-02 to investigate the effect of SUD on the normal cells. Flow cytometric analysis was used to detect the effect of SUD on cell cycle, Hoechst 33258 staining was used to evaluate the apoptosis induced by SUD, real-time fluorescence quantitative PCR was used to investigate the expression of the cell cycle-relevant and apoptosis-relevant genes, a reactive oxygen species (ROS) assay was used to observe the production of ROS, and western blotting was used to determine the level of cell cycle-relevant and apoptosis-relevant proteins. According to the results of the MTT assay, the growth of human cancer cell lines was significantly inhibited by SUD treatment in a time-dependent and concentration-dependent manner; however, the growth of human normal cells was not significantly inhibited by SUD treatment. The results of flow cytometric analyses showed that SUD induced cell-cycle arrest at the G2-phase in MCF-7 cells and at the G1-phase in BGC-823 cells. The results of Hoechst 33258 staining showed that SUD induced apoptosis in MCF-7 and BGC-823 cells. The results of the ROS assay showed that the production of ROS was increased by SUD in MCF-7 and BGC-823 cells. Our research suggests that the growth-inhibitory effect of SUD on MCF-7 cells was related to G2-phase arrest, which was associated with the upregulated expression of p53 and Chk1 proteins, and downregulation of the cyclin B1 gene, cdc25a, and cyclin-dependent kinase 1 (CDK1) proteins; the growth-inhibitory effect of SUD on BGC-823 cells was related to G1-phase arrest, which was associated with upregulation of the p53 gene and Chk1 protein and downregulation of cdc25a protein and the CDK4 gene. SUD also induced apoptosis in MCF-7 and BGC-823 cell lines through the mitochondrial pathway in a p53-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , ortoaminobenzoatos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Humanos
8.
Yao Xue Xue Bao ; 50(7): 824-9, 2015 Jul.
Artigo em Zh | MEDLINE | ID: mdl-26552142

RESUMO

This paper is to report the exploration of the activation of Rho/ROCK signal pathway in 5-HT-induced proliferation of rat pulmonary artery smooth muscle cells (PASMCs) and the inhibitory effect of m-Nis on this pathway. PASMCs were cultured with the explant technique. MTT assay was used to explore the proliferation of PASMCs after 5-HT treated for different time and the intervening effect of m-Nis. RT-PCR and Western blot were used respectively to explore the mRNA expression of RhoA, ROCK1 and the protein expression of p-MYPT1 in 5-HT-treated PASMCs and intervening effect of m-Nis. The results of MTT assay suggested that 5-HT (1 µmol · L(-1)) treatment for 12-72 h significantly induced the proliferation of rat PASMCs (P<0.05 or P < 0.01), which were inhibited by m-Nis (1 x 10(-5), 1 x 10(-6), l x 10(-7), 1 x10(-8) mol · L(-1)) in dose-dependent manners (P < 0.05 or P < 0.01). Similarly, the mRNA expression of RhoA, ROCK1 and the protein expression of p-MYPT1 were also inhibited by m-Nis in different degrees (P < 0.05 or P < 0.01). Thus, the results of this study suggested that Rho/ROCK pathway played an important role in 5-HT-induced proliferation of rat PASMCs, m-Nis inhibited 5-HT-induced proliferation obviously, which may be related to the blockage of Rho/ROCK signal pathway.


Assuntos
Miócitos de Músculo Liso/citologia , Nisoldipino/farmacologia , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Artéria Pulmonar/citologia , Ratos , Serotonina/farmacologia
9.
Cancer Biol Ther ; 25(1): 2321767, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38417050

RESUMO

Doxorubicin (DOX) is one of the most effective and widely used chemotherapeutic drugs. However, DOX resistance is a critical risk problem for breast cancer treatment. Previous studies have demonstrated that metadherin (MTDH) involves in DOX resistance in breast cancer, but the exact mechanism remains unclear. In this study, we found that glutaminyl-peptide cyclotransferase (QPCT) was a MTDH DOX resistance-related downstream gene in breast cancer. Elevated expression of QPCT was found in the GEPIA database, breast cancer tissue, and breast cancer cells. Clinical data showed that QPCT expression was positively associated with poor prognosis in DOX-treated patients. Overexpression of QPCT could promote the proliferation, invasion and migration, and reduce DOX sensitivity in MCF-7 and MDA-MB-231 cells. Mechanistically, MTDH positively regulates the expressions of NF-κB (p65) and QPCT, and NF-κB (p65) directly regulates the expression of QPCT. Therefore, MTDH/NF-κB (p65)/QPCT signal axis was proposed. Collectively, our findings delineate the mechanism by which the MTDH/NF-κB (p65) axis regulate QPCT signaling and suggest that this complex may play an essential role in breast cancer progression and affect DOX sensitivity.


Assuntos
Aminoaciltransferases , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética
10.
Biomed Pharmacother ; 158: 114066, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528915

RESUMO

Lingguizhugan Decoction (LGZGD) is a classical traditional Chinese medicine prescription. Our previous studies found that disorders of lipid metabolism were reversed by LGZGD in heart failure (HF) mice. This study aimed to reveal the regulation of lipid metabolism of LGZGD. A mice model of HF was established by intraperitoneal injection of doxorubicin. The components of LGZGD were identified with the UHPLC-QTOF-MS method. The regulation of lipid metabolism by LGZGD was detected by serum lipidomics and heart tissue proteomics. Molecular docking was further performed to screen active components. A total of 78 compounds in LGZGD were identified. Results of lipidomics showed that 37 lipids illustrated a significant recovery trend to normal after the treatment of LGZGD. Results of proteomics demonstrated that 55 proteins were altered by the administration of LGZGD in HF mice. After enrichment analysis, the Prakg2/Ucp2/Plin1 axis on the Apelin pathway plays a vital role in HF treatment by LGZGD. Nine active components exhibited the outstanding ability of binding to the apelin receptor with MM-GBSA value lower than -60 Kcal/mol. In conclusion, all results combined together revealed that multi-component in the LGZGD had beneficial effects on the HF through ameliorating lipid disorders, which provides a novel insight into the cardioprotective effects of LGZGD and its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Camundongos , Animais , Lipidômica/métodos , Metabolismo dos Lipídeos , Proteômica , Simulação de Acoplamento Molecular , Insuficiência Cardíaca/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
11.
Am J Transl Res ; 15(2): 745-754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915772

RESUMO

OBJECTIVE: To investigate the effect of bradykinin (BK) on cisplatin (DDP)-induced cardiotoxicity at the cellular level and its cytological mechanism. METHODS: The toxic effects of DDP on GP-H1 cells, and the effects of BK on DDP cardiomyocyte survival rate, DDP-induced malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), reactive oxygen species (ROS), mitochondria membrane potential (MMP) and apoptosis were explored. RESULTS: DDP at different concentrations inhibited GP-H1 cells at 12 h after administration, and the inhibitory effect was more prominent at 24 h after administration and continued until 72 h after administration. The severity of GP-H1 cell damage induced by DDP was reduced by 0.1 µM, 1 µM, and 10 µM BK. After GP-H1 cells were treated with DDP, ROS levels increased and MMP levels decreased, while BK intervention inhibited these effects. At 24 h after DDP treatment, Bax/bcl-2 increased in GP-H1 cells, and the expressions of Caspase-3, p-NF-κB, p-p38 and p-Smad2 decreased. After intervention with BK, it was shown that Bax/Bcl-2 was significantly reduced, and the expressions of Caspase-3, p-NF-κB, p-p38 and p-Smad2 decreased. Bax/Bcl-2 and the expressions of Caspase-3, p-NF-κB, p-p38 and p-Smad2 of GP-H1 cells were basically not affected by BK alone. CONCLUSION: The protective effect of BK on DDP-induced GP-H1 cell damage in guinea pig is related to the activation of PI3K/Akt/NO signaling pathway by BK, which reduces oxidative stress levels in cardiomyocytes and also acts as an anti-apoptotic agent.

12.
Drug Des Devel Ther ; 17: 1889-1906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397788

RESUMO

Introduction: Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid carcinoma. Doxorubicin (DOX) is the only drug approved for anaplastic thyroid cancer treatment, but its clinical use is restricted due to irreversible tissue toxicity. Berberine (BER), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been proposed to have antitumor activity in many cancers. However, the underlying mechanisms by which BER regulates apoptosis and autophagy in ATC remain unclear. Thus, the present study aimed to assess the therapeutic effect of BER in human ATC cell lines CAL-62 and BHT-101 as well as the underlying mechanisms. In addition, we assessed the antitumor effects of a combination of BER and DOX in ATC cells. Methods: The cell viability of CAL-62 and BTH-101 with treatment of BER for different hours was measured by CCK-8 assay, and cell apoptosis was assessed by clone formation assay and flow cytometric analysis. The protein levels of apoptosis protein, autophagy-related proteins and PI3K/AKT/mTORpathway were determined Using Western blot. Autophagy in cells was observed with GFP-LC3 plasmid using confocal fluorescent microscopy. Flow cytometry was used to detect intracellular ROS. Results: The present results showed that BER significantly inhibited cell growth and induced apoptosis in ATC cells. BER treatment also significantly upregulated the expression of LC3B-II and increased the number of GFP-LC3 puncta in ATC cells. Inhibition of autophagy by 3-methyladenine (3-MA) suppressed BER-induced autophagic cell death. Moreover, BER induced the generation of reactive oxygen species (ROS). Mechanistically, we demonstrated that BER regulated the autophagy and apoptosis of human ATC cells through the PI3K/AKT/mTOR pathways. Furthermore, BER and DOX cooperated to promote apoptosis and autophagy in ATC cells. Conclusion: Taken together, the present findings indicated that BER induces apoptosis and autophagic cell death by activating ROS and regulating the PI3K/AKT/mTOR signaling pathway.


Assuntos
Berberina , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Berberina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Autofagia
13.
Front Pharmacol ; 14: 1150861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538178

RESUMO

Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.

14.
Comput Struct Biotechnol J ; 21: 1828-1842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923473

RESUMO

Tripterygium glycosides tablets (TGT) are the commonly used preparation for rheumatoid arthritis (RA). However, the changes in TGT on RA are still unclear at the metabolic level. This study aimed to reveal the biological processes of TGT in collagen-induced arthritis (CIA) rats through integrated metabolomics and network analysis. First, the CIA model in rats was established, and the CIA rats were given three doses of TGT. Then, the endogenous metabolites in the serum from normal rats, CIA rats, and CIA rats treated with varying doses of TGT were detected by UHPLC-QTOF-MS/MS. Next, univariate and multivariate statistical analyses were performed to find the differential metabolites. Finally, differential metabolites, metabolic pathways, and hub genes were analyzed integrally to reveal the biological processes of TGT in CIA rats. The paw diameter, arthritis score, immunoglobulin G (IgG) concentration, CT image, and histological assay showed that TGT had evident therapeutic effects on CIA rats. Untargeted metabolomics revealed that TGT could ameliorate the down-regulation of lipid levels in CIA rats. Four key differential metabolites were found including LysoP(18:0), LysoPA(20:4), LysoPA(18:2), and PS(O-20:0/17:1). The glycerophospholipid metabolic pathway was perturbed in treating CIA with TGT. A total of 24 genes, including PLD1, LPCAT4, AGPAT1, and PLA2G4A, were found to be the hub genes of TGT in CIA rats. In conclusion, the integrated analysis provided a novel and holistic perspective on the biological processes of TGT in CIA rats, which could give helpful guidance for further TGT on RA. Future studies based on human samples are necessary.

15.
Chem Pharm Bull (Tokyo) ; 60(10): 1227-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22863745

RESUMO

A novel drug delivery system of doxorubicin (DOX)-loaded Zein in situ gel for interstitial chemotherapy was investigated in this study. The possible mechanisms of drug release were described according to morphological analysis by optical microscopy and scanning electronic microscope (SEM). In vitro and in vivo anti-tumor activity studies showed that DOX-loaded Zein in situ gel was superior to DOX solution. Local pharmacokinetics in tumor tissue was studied by quantitative analysis with confocal laser scanning microscopy (CLSM) combined with microdialysis technology. A pharmacokinetics mathematical model of DOX-loaded Zein in situ gel in tumors was then built.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Zeína/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Camundongos , Modelos Biológicos
16.
Appl Biochem Biotechnol ; 194(11): 5333-5352, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35763252

RESUMO

Tripterygium Glycosides Tablets (TGT) has shown obvious anti-rheumatoid arthritis (RA) effects accompanied by hepatotoxicity. Despite that many studies looked at TGT's anti-RA or hepatotoxic mechanism and substance basis, the results were still insufficient. Furthermore, the anti-RA and hepatotoxicity investigations of TGT were undertaken separately, neglecting the relationship between efficacy and toxicity. Herein, an integrated approach combining metabolomics, network pharmacology, serum pharmacochemistry, and molecular docking was adopted to elucidate the mechanism and substance basis of Tripterygium Glycosides Tablets (TGT) on anti-rheumatoid arthritis and hepatotoxicity simultaneously. The results showed that 33 components in TGT were absorbed into rat serum. Two toxic targets (PRKCA, FASN), three effective targets (PLA2G10, PTGES, PLA2G1B), and four effective and toxic targets (PTGS1, PTGS2, PLA2G2A, ALOX5) were obtained by metabolomics combined with network analysis and network pharmacology. A component-target-RA-hepatotoxicity network was constructed and five hepatotoxic components (1-desacetylwilforgine, wilfordconine, wilforgine, wilformine, wilfornine D), eight effective-toxic components (14-oxo-19-(4 → 3) abeo-abieta-3,8,12-tetraen-19,18-olide, 7-oxo-18(4 → 3) abeo-abieta-3,8,11,13-tetraen-18-oic acid, hypoglaulide, triptotriterpenic acid A, wilforol F, wilforlide B, triptoquinone B, wilforlide A); and 23 non-effective and non-toxic components were acquired and validated by molecular docking. In addition, our research revealed that glycerophospholipid metabolism and ether lipid metabolism were correlated to both hepatotoxicity and anti-RA of TGT. While in sphingolipid metabolism, ceramidases regulated ceramide-sphingosine and phytoceramide-phytosphingosine reaction were found to be correlated to hepatotoxicity, sphinganine-1-phosphate lyase (SPL) regulated sphingosine 1-phosphate (S1P)-phosphoethanolamine and sphinganine 1-phosphate-phosphoethanolamine were found to be attributed to anti-RA effects.


Assuntos
Artrite Reumatoide , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Liases , Ratos , Animais , Tripterygium/química , Glicosídeos , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Esfingosina , Fosfolipases A2 do Grupo IB , Medicamentos de Ervas Chinesas/farmacologia , Artrite Reumatoide/tratamento farmacológico , Comprimidos , Ceramidas , Glicerofosfolipídeos , Esfingolipídeos , Fosfatos , Éteres
17.
BMC Pharmacol Toxicol ; 23(1): 24, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428330

RESUMO

BACKGROUND: Inflammation plays a major role in the pulmonary artery hypertension (PAH) and the acute lung injury (ALI) diseases. The common feature of these complications is the dysfunction of pulmonary microvascular endothelial cells (PMVECs). Fasudil, the only Rho kinase (ROCK) inhibitor used in clinic, has been proved to be the most promising new drug for the treatment of PAH, with some anti-inflammatory activity. Therefore, in the present study, the effect of fasudil on lipopolysaccharide (LPS)-induced inflammatory injury in rat PMVECs was investigated. METHODS: LPS was used to make inflammatory injury model of rat PMVECs. Thereafter, the mRNA and protein expression of pro-inflammatory factors was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) assay respectively. Intracellular reactive oxygen species (ROS) levels were measured by the confocal laser scanning system. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA) were determined by using commercial kits according to the manufacturer's instructions. Western blot assay was used to detect the protein expression of nuclear factor kappa B (NF-κB) p65. RESULTS: Fasudil effectively prevented inflammatory injury induced by LPS, which is manifested by the decrease of pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chenotactic protein-1 (MCP-1). Meanwhile, fasudil dramatically reduced the levels of ROS and MDA, and also elevated the activities of SOD and GSH-Px. Furthermore, the nuclear translocation of NF-κB p65 induced by LPS was also suppressed by fasudil. Additionally, the ROS scavengers N-Acetylcysteine (N-Ace) was also found to inhibit the nuclear translocation of NF-κB and the mRNA expression of IL-6 and MCP-1 induced by LPS, which suggested that ROS was essential for the nuclear translocation of NF-κB. CONCLUSIONS: The present study revealed that fasudil reduced the expression of inflammatory factors, alleviated the inflammatory and oxidative damage induced by LPS in rat PMVECs via ROS-NF-κB signaling pathway.


Assuntos
Lipopolissacarídeos , NF-kappa B , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Células Endoteliais , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia
18.
Toxicol Lett ; 333: 290-302, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835833

RESUMO

Triptolide, a major active component of Triptergium wilfordii Hook. f, is used in the treatment of autoimmune disease. However, triptolide is associated with severe adverse reactions, especially hepatotoxicity, which limits its clinical application. To examine the underlying mechanism of triptolide-induced liver injury, a combination of dose- and time-dependent toxic effects, RNA-seq and metabolomics were employed. Triptolide-induced toxicity occurred in a dose- and time-dependent manners and was characterized by apoptosis and not necroptosis. Transcriptomics profiles of the dose-dependent response to triptolide suggested that PI3K/AKT, MAPK, TNFα and p53 signaling pathways were the vital steps in triptolide-induced hepatocyte apoptosis. Metabolomics further revealed that glycerophospholipid, fatty acid, leukotriene, purine and pyrimidine metabolism were the major metabolic alterations after triptolide exposure. Finally, acylcarnitines were identified as potential biomarkers for the early detection of triptolide-induced liver injury.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas , Diterpenos/toxicidade , Metaboloma/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Fenantrenos/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Apoptose/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Compostos de Epóxi/toxicidade , Perfilação da Expressão Gênica , Metaboloma/genética , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/genética
19.
Acta Pharmacol Sin ; 29(11): 1313-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18954525

RESUMO

AIM: To determine whether different Na+/K+-ATPase signal transduction pathways have positive inotropic effects on normal ventricular myocytes (NC) and failing ventricular myocytes (FC), and are involved in an increase of [Ca2+]i induced by strophanthidin (Str). METHODS: A guinea pig model of congestive heart failure was made by constricting descending aorta. The left ventricular myocytes were enzymatically isolated. The effects of 25 micromol/L Str with different signal-transducing inhibitors on contractility and the calcium transient of NC or FC from guinea pigs were simultaneously assessed and compared with those in the 25 micromol/L Str-only group by a video-based, motion-edge detection system. RESULTS: Str at 1, 10, and 25 micromol/L in NC and Str at 0.1, 1, 10, and 25 micromol/L) in FC elevated the calcium transient amplitude and increased the positive inotropic effects in a concentration-dependent manner, respectively. At the same concentration, the effects of Str were more potent in FC than in NC. In FC, both the mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS) signal transduction pathway of Na+/K+-ATPase were involved in the increase of the calcium transient induced by Str, but only activation of the MAPK pathway increased the calcium transient in NC. However, only the ROS pathway was involved in positive inotropic effects both in NC and FC. CONCLUSION: The present study suggests that Na+/K+-ATPase signaling pathways involved in the inotropic effects of Str in NC and FC are consistent, and Na+/K+-ATPase signaling pathways involved in the increase of [Ca2+]i by Str in NC and FC are different.


Assuntos
Cálcio/farmacologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Estrofantidina/farmacologia , Animais , Cobaias , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Técnicas In Vitro , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Yao Xue Xue Bao ; 43(3): 259-66, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18630261

RESUMO

Effect of strophanthidin (Str) on intracellular calcium concentration ([Ca2+]i) was investigated on isolated ventricular myocytes of guinea pig. Single ventricular myocytes were obtained by enzymatic dissociation technique. Fluorescent signal of [Ca2+]i was detected with confocal microscopy after incubation of cardiomycytes in Tyrode' s solution with Fluo3-AM. The result showed that Str increased [Ca2+]i in a concentration-dependent manner. The ventricular myocytes began to round-up into a contracture state once the peak level of [Ca2+]i was achieved in the presence of Str (10 micromol L(- 1)), but remained no change in the presence of Str (1 and 100 nmol L(-1)). Tetrodotoxin (TTX), nisodipine, and high concentration of extracellular Ca2+ changed the response of cardiomycytes to Str (1 and 100 nmol L(-1)) , but had no obvious effects on the action of Str (10 micromol L(-1)). The elevation of [Ca2+]i caused by Str at all of the detected concentrations was partially antagonized by rynodine (10 micromol L(-1)) or the removal of Ca2+ from Tyrode's solution. In Na+, K+ -free Tyrode' s solution, the response of cardiomycytes in [Ca2+]i elevation to Str (10 micromol L(-1)) was attenuated, while remained no change to Str (1 and 100 nmol L(-1)). TTX, nisodipine, and high concentration of extracellular Ca2+ changed the response of cardiomycytes to Str at all of the detected concentrations in Na+, K+ -free Tyrode's solution. The study suggests that the elevation of [Ca2+]i by Str at the low (nomomolar) concentrations is partially mediated by the extracellular calcium influx through Ca2+ channel or a "slip mode conductance" of TTX sensitive Na+ channel. While the effect of Str at high (micromolar) concentrations was mainly due to the inhibition of Na+, K+ -ATPase. Directly triggering the release of intracellular Ca2+ from sarcoplasmic reticulum (SR) by Str may be also involved in the mechanism of [Ca2+]i elevation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Sarcolema/patologia , Retículo Sarcoplasmático/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Estrofantidina/farmacologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Equorina/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Fura-2/farmacologia , Fura-2/provisão & distribuição , Cobaias , Miocárdio/patologia , Nifedipino/farmacologia , Rianodina/farmacologia , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio , Tetrodotoxina/farmacologia , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA