Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anticancer Res ; 40(9): 5059-5069, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878794

RESUMO

BACKGROUND/AIM: Liver cancer is the fourth leading cause of cancer-related mortality globally, of which hepatocellular carcinoma (HCC) accounts for 85-90% of total primary liver cancer. A drug shortage for HCC therapy triggered us to screen the small-molecule database with a high-throughput cellular screening system. Herein, we examined whether cetyltrimethylammonium bromide (CTAB) inhibits cellular mobility and invasiveness of Mahlavu HCC cells. MATERIALS AND METHODS: The effects of CTAB on cell viability were assessed using WST-1 assay, cell-cycle distribution using flow cytometric analysis, migration/invasion using woundhealing and transwell assays, and associated protein levels using western blotting. RESULTS: Treatment of Mahlavu cells with CTAB transformed its mesenchymal spindle-like morphology. In addition, CTAB exerted inhibitory effects on the migration and invasion of Mahlavu cells dose-dependently. CTAB also reduced the protein levels of matrix metalloproteinase-2 (MMP2), MMP9, RAC family small GTPase 1, SNAIL family transcriptional repressor 1 (SNAI1), SNAI2, TWIST family basic helix-loop-helix transcription factor 1 (TWIST1), vimentin, N-cadherin, phospho-fibroblast growth factor (FGF) receptor, phospho-phosphoinositide 3-kinase, phospho-v-Akt murine thymoma viral oncogene and phospho-signal transducer and activator of transcription 3 but increased the protein levels of tissue inhibitor of metalloproteinases-1/2 and E-cadherin. Rescue experiments proved that CTAB induced mesenchymal-epithelial transition in Mahlavu cells and this was significantly dose-dependently mitigated by basic FGF. CONCLUSION: CTAB suppressed the migration and invasion of Mahlavu cells through inhibition of the FGF signaling pathway. CTAB seems to be a potential agent for preventing metastasis of hepatic cancer.


Assuntos
Antineoplásicos/farmacologia , Cetrimônio/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Anticancer Res ; 40(8): 4513-4522, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727781

RESUMO

BACKGROUND/AIM: Hepatocellular carcinoma (HCC) arises from hepatocytes, and is the most frequently occurring malignancy of primary liver cancer. In this study, we investigated the anti-metastatic effects of the quaternary ammonium compound, cetyltrimethylammonium bromide (CTAB), on HA22T/VGH HCC cells. MATERIALS AND METHODS: According to our preliminary data, the effect of CTAB on cell cycle distribution, migration, invasion and the associated protein levels was examined using flow cytometry, wound-healing migration, Matrigel transwell invasion assay and western blotting under sub-lethal concentrations. RESULTS: CTAB treatment of HA22T/VGH cells casued dose-dependent mesenchymal-epithelial transition (MET)-like changes and impaired migration and invasion capabilities. In addition, CTAB reduced the levels of metastasis-related proteins including c-Met, phosphoinositide 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), Twist, N-cadherin, and Vimentin. Moreover, pretreatment with hepatocyte growth factor (HGF) rescued CTAB-mediated effects. CONCLUSION: CTAB exhibited potent anti-EMT and anti-metastatic activities through the inhibition of migration and invasion of HA22T/VGH cells. CTAB interrupted the mesenchymal characteristics of HA22T/VGH cells, which were significantly alleviated by HGF in a dose-dependent manner. CTAB has the potential to evolve as a therapeutic agent for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cetrimônio/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA