Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 44(17): 3287-3294, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34240798

RESUMO

Prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside are three major chromone derivatives of Saposhnikovia divaricata that have many pharmacological activities, such as anti-inflammatory and antitumor activities. In the present work, an effective method for the simultaneous separation of prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside with high purities was established using HPD-300 resin coupled with preparative high-performance liquid chromatography. The adsorption kinetics curves of the three compounds on the HPD-300 resin were studied and found to fit well according to the pseudo-second-order equation. The adsorption isotherm results indicated that the adsorption process of the three compounds was exothermic. After a one-run treatment with the resin, the contents of prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside increased from 0.29, 0.06, and 0.37% to 13.07, 2.83, and 16.91% with recovery yields of 76.38, 78.25, and 76.73%, respectively. Finally, the purities of the three compounds were found to reach more than 95% after further separation using preparative high-performance liquid chromatography. The method developed in this study was effective and could simultaneously separate three chromones from Saposhnikovia divaricate. The experimental results also showed that the HPD-300 resin is suitable for the separation of chromone derivatives.


Assuntos
Apiaceae/química , Cromonas/isolamento & purificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Monossacarídeos/isolamento & purificação , Resinas Vegetais/química , Xantenos/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão , Cromonas/química , Medicamentos de Ervas Chinesas/química , Cinética , Monossacarídeos/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Xantenos/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-37714051

RESUMO

Iridoid glycosides (geniposide (GP), genipin-1-gentiobioside (GB), etc.) and crocins (crocin Ⅰ (CR1), crocin Ⅱ(CR2), etc.) are two main bioactive components in Gardeniae Fructus (GF), which is a famous traditional Chinese medicine. Iridoid glycosides exhibit many activities and are used to manufacture gardenia blue pigment for the food industry. Crocins are rare natural water-soluble carotenoids that are often used as food colorants. A sequential macroporous resin column chromatography technology composed of HC-500B and HC-900B resins was developed to selectively separate iridoid glucosides and crocins from GF. The adsorption of GP on HC-900B resin was an exothermic process. The adsorption of CR1 on HC-500B resin was an endothermic process. The two kinds of components were completely separated by a sequential resin column. GB and GP were mainly found in product 1 (P1) with purities of 11.38% and 46.83%, respectively, while CR1 and CR2 were mainly found in product 2 (P2) with purities of 12.32% and 1.40%, respectively. The recovery yields of all the compounds were more than 80%. The above results showed that sequential resin column chromatography technology achieved high selectivity and recovery yields. GF extract, P1 and P2 could significantly inhibit the secretion of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that iridoid glycosides and crocins provide a greater contribution to the anti-inflammatory activity of GF. At the same time, compared to the GF extract and P1, P2 exhibited stronger scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, indicating that crocins may provide a significant contribution to the antioxidant activity of GF.


Assuntos
Medicamentos de Ervas Chinesas , Gardenia , Glucosídeos Iridoides/análise , Antioxidantes/farmacologia , Gardenia/química , Cromatografia Líquida de Alta Pressão/métodos , Carotenoides/farmacologia , Glicosídeos Iridoides/análise , Medicamentos de Ervas Chinesas/análise , Anti-Inflamatórios/farmacologia
3.
Front Bioeng Biotechnol ; 10: 996456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172017

RESUMO

A portable nucleic acid detection (PNAD) system based on real-time polymerase chain reaction (real-time PCR) has been developed for point-of-care testing (POCT) of infectious disease pathogens. In order to achieve "sample-in, result-out" while keeping the system compact, the hardware system integrates optical, thermal and motion control modules in a limited space for nucleic acid extraction, purification, amplification and detection. Among these hardware modules, the fluorescence module is one of the most important modules, because its performance directly affects the accuracy and sensitivity of the testing results. In this paper, a miniaturized, high-sensitivity and integrated dual-channel fluorescence module have been proposed for the homemade PNAD system. Based on the principle of confocal optical path, two group of excitation-emission optical paths of different wavelengths are integrated in a small space. In terms of circuitry, a current-light dual negative feedback light emitting diode (LED) drive circuit is applied to improve the stability of the excited light source. All optical and electronic components are integrated in a metal box of 55 mm × 45 mm × 15 mm, that helps miniaturize the detection system. Two different modules have been assembled to fit various fluorescent dyes or probes with the set of excitation and emission as follow: module 1#: 470 nm/525 nm, 570 nm/630 nm; module 2#: 520 nm/570 nm, 630 nm/690 nm. Finally, hepatitis B virus (HBV) concentration gradient detection and multiplex detection of different gene targets of SARS-CoV-2 are carried out on the PNAD system equipped with these two fluorescence modules for evaluating their performances. Compared with the commercial real-time PCR instrument, our fluorescence module has good stability and detection sensitivity.

4.
Biosensors (Basel) ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140149

RESUMO

As an important detection tool in biochemistry, fluorescence detection has wide applications. Quantitative detection can be achieved by detecting fluorescence signals excited by excitation light at a specific wavelength range. Therefore, the key to fluorescence detection is the stable control of the excitation light and the accurate acquisition of weak photoelectric signals. Moreover, to improve portability and instantaneity, devices are developing in miniaturization and integration. As the core of such devices, fluorescence detectors should also have these features. Under this circumstance, we designed a highly integrated and diminutive fluorescence detector and focused on its excitation light driving and photoelectric signal processing. A current-light dual negative feedback light-emitting diode (LED) driving circuit was proposed to obtain constant current and luminance. In addition, a silicon photodiode (PD) was used to receive and convert the fluorescence signal to an electric signal. Then, amplifying, filtering, and analog-to-digital (A/D) converting were applied to make the detection of weak fluorescence signals possible. The test results showed that the designed circuit has wonderful performance, and the detector shows good linearity (R2 = 0.9967) and sensitivity (LOD = 0.077 nM) in the detection of fluorescein sodium solution. Finally, a real-time fluorescence polymerase chain reaction (real-time PCR) of Legionella pneumophila was carried out on a homemade platform equipped with this detector, indicating that the detector met the requirements of real-time PCR detection.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Silício , Retroalimentação , Fluoresceína , Luz
5.
Biosensors (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671839

RESUMO

The accuracy and precision of analyte concentrations measured in whole blood by chemiluminescence immunoassay (CLIA) have been significantly affected by erythrocytes, which leads to poor application of whole blood CLIA in clinical practice. In this work, a chemiluminescence biosensing optical platform for blood hematocrit (HCT) analysis using MAGICL 6000 (Getein Biotechnology, Nanjing, China) was designed, implemented, and fully characterized. The developed method was successfully applied to determine various HCT levels of human blood from 0% to 65%, with a correlation coefficient of 0.9885 compared with the conventional method (Sysmex XE 5000, Kobe, Japan). A mathematical model was developed to quantitatively evaluate the impact of HCT on the results of two sample types (whole blood vs. plasma). Combining the established HCT method and mathematical model with CLIA on MAGICL 6000, the precision was significantly improved by almost 20%. Comparison studies using whole blood samples and corresponding plasma samples showed that the square of the correlation coefficients of troponin I (cTnI), myoglobin (MYO), creatine kinase MB (CK-MB), and N-terminal pro-hormone brain natriuretic peptide (NT-proBNP) were increased to 0.9992, 0.9997, 0.9996, and 0.9994, respectively, showing a great potential for clinical application.


Assuntos
Luminescência , Troponina I , Humanos , Hematócrito , Biomarcadores , Creatina Quinase Forma MB , Imunoensaio/métodos
6.
Biosensors (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140069

RESUMO

The traditional infectious disease detection process is cumbersome, and there is only a single application scenario. In recent years, with the development of the medical industry and the impact of the epidemic situation, the number of infectious disease detection instruments based on nursing point detection has been increasing. Due to this trend, many detection instruments and massive detection data urgently need to be managed. In addition, the experiment failed due to the abnormal fluorescence curve generated by a human operator or sample impurities. Finally, the geographic information system has also played an active role in spreading and preventing infectious diseases; this paper designs a "detection-service-mobile" three-terminal system to realize the control of diagnostic instruments and the comprehensive management of data. Machine learning is used to classify the enlarged curve and calculate the cycle threshold of the positive curve; combined with a geographic information system, the detection results are marked on the mobile terminal map to realize the visual display of the positive results of nucleic acid amplification detection and the early warning of infectious diseases. In the research, applying this system to portable field pathogen detection is feasible and practical.


Assuntos
Doenças Transmissíveis , Ácidos Nucleicos , Doenças Transmissíveis/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Software
7.
J Biomed Nanotechnol ; 17(3): 407-415, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875075

RESUMO

Portable nucleic acid detection (PNAD) systems are performed for sample processing, amplification and detection automatically in an individual device realizing "sample in, answer out." For this goal, numerous function modules should be integrated in a diminutive device, in which temperature controller is one of the most important modules. In a nucleic acid detection process, both sample processing and polymerase chain reaction (PCR) require fast and accurate temperature control to increase concentration and purity of the extraction product and to improve amplification efficiency. In this paper, a dual-channel temperature controller for PNAD systems is developed, which contains a printed circuit board (PCB) and an integrated control program with a fast and accurate control strategy. According to the principle of nucleic acid detection based on magnetic nanoparticles, the controller can work in different modes such as high-precision heating control for nucleic acid extraction, rapid thermal cycle control for PCR, and rate adjustable constant heating/cooling control for melting curve. Evaluatively, the average heating/cooling rate of the module can exceed about 6 C/s, while the temperature fluctuation was less than ± 0.1°C, which can meet the demands of PNAD systems very well.


Assuntos
Nanopartículas de Magnetita , Ácidos Nucleicos , Calefação , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA