Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32970990

RESUMO

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Reações Antígeno-Anticorpo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Microscopia Crioeletrônica , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Feminino , Pulmão/patologia , Masculino , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Estrutura Quaternária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Cell ; 182(1): 73-84.e16, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32425270

RESUMO

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Linfócitos B/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Análise de Célula Única , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , COVID-19 , Convalescença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Pandemias , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Éxons VDJ
3.
Immunity ; 48(4): 675-687.e7, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29653696

RESUMO

Manganese (Mn) is essential for many physiological processes, but its functions in innate immunity remain undefined. Here, we found that Mn2+ was required for the host defense against DNA viruses by increasing the sensitivity of the DNA sensor cGAS and its downstream adaptor protein STING. Mn2+ was released from membrane-enclosed organelles upon viral infection and accumulated in the cytosol where it bound directly to cGAS. Mn2+ enhanced the sensitivity of cGAS to double-stranded DNA (dsDNA) and its enzymatic activity, enabling cGAS to produce secondary messenger cGAMP in the presence of low concentrations of dsDNA that would otherwise be non-stimulatory. Mn2+ also enhanced STING activity by augmenting cGAMP-STING binding affinity. Mn-deficient mice showed diminished cytokine production and were more vulnerable to DNA viruses, and Mn-deficient STING-deficient mice showed no increased susceptibility. These findings indicate that Mn is critically involved and required for the host defense against DNA viruses.


Assuntos
Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , DNA Viral/imunologia , Manganês/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Adulto , Animais , Linhagem Celular , Cricetinae , Ativação Enzimática/imunologia , Feminino , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
4.
Immunity ; 46(3): 393-404, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314590

RESUMO

Viral infection triggers host innate immune responses that result in the production of various cytokines including type I interferons (IFN), activation of inflammasomes, and programmed cell death of the infected cells. Tight control of inflammatory cytokine production is crucial for the triggering of an effective immune response that can resolve the infection without causing host pathology. In examining the inflammatory response of Asc-/- and Casp1-/- macrophages, we found that deficiency in these molecules resulted in increased IFN production upon DNA virus infection, but not RNA virus challenge. Investigation of the underlying mechanism revealed that upon canonical and non-canonical inflammasome activation, caspase-1 interacted with cyclic GMP-AMP (cGAMP) synthase (cGAS), cleaving it and dampening cGAS-STING-mediated IFN production. Deficiency in inflammasome signaling enhanced host resistance to DNA virus in vitro and in vivo, and this regulatory role extended to other inflammatory caspases. Thus, inflammasome activation dampens cGAS-dependent signaling, suggesting cross-regulation between intracellular DNA-sensing pathways.


Assuntos
Caspase 1/imunologia , Infecções por Vírus de DNA/imunologia , Inflamassomos/imunologia , Nucleotidiltransferases/imunologia , Animais , Caspase 1/metabolismo , Infecções por Vírus de DNA/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo
5.
Nat Chem Biol ; 19(5): 548-555, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593274

RESUMO

Metal ions have various important biological roles in proteins, including structural maintenance, molecular recognition and catalysis. Previous methods of predicting metal-binding sites in proteomes were based on either sequence or structural motifs. Here we developed a co-evolution-based pipeline named 'MetalNet' to systematically predict metal-binding sites in proteomes. We applied MetalNet to proteomes of four representative prokaryotic species and predicted 4,849 potential metalloproteins, which substantially expands the currently annotated metalloproteomes. We biochemically and structurally validated previously unannotated metal-binding sites in several proteins, including apo-citrate lyase phosphoribosyl-dephospho-CoA transferase citX, an Escherichia coli enzyme lacking structural or sequence homology to any known metalloprotein (Protein Data Bank (PDB) codes: 7DCM and 7DCN ). MetalNet also successfully recapitulated all known zinc-binding sites from the human spliceosome complex. The pipeline of MetalNet provides a unique and enabling tool for interrogating the hidden metalloproteome and studying metal biology.


Assuntos
Metaloproteínas , Proteoma , Humanos , Sequência de Aminoácidos , Proteoma/química , Metais/metabolismo , Metaloproteínas/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Aprendizado de Máquina
6.
Nucleic Acids Res ; 51(1): 434-448, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546761

RESUMO

Plant-specific TCP transcription factors are key regulators of diverse plant functions. TCP transcription factors have long been annotated as basic helix-loop-helix (bHLH) transcription factors according to remote sequence homology without experimental validation, and their consensus DNA-binding sequences and protein-DNA recognition mechanisms have remained elusive. Here, we report the crystal structures of the class I TCP domain from AtTCP15 and the class II TCP domain from AtTCP10 in complex with different double-stranded DNA (dsDNA). The complex structures reveal that the TCP domain is a distinct DNA-binding motif and the homodimeric TCP domains adopt a unique three-site recognition mode, binding to dsDNA mainly through a central pair of ß-strands formed by the dimer interface and two basic flexible loops from each monomer. The consensus DNA-binding sequence for class I TCPs is a perfectly palindromic 11 bp (GTGGGNCCCAC), whereas that for class II TCPs is a near-palindromic 11 bp (GTGGTCCCCAC). The unique DNA binding mode allows the TCP domains to display broad specificity for a range of DNA sequences even shorter than 11 bp, adding further complexity to the regulatory network of plant TCP transcription factors.


Assuntos
Proteínas de Arabidopsis , DNA , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/química , DNA/metabolismo , Sequências Hélice-Alça-Hélice , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
7.
Langmuir ; 40(18): 9651-9660, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656101

RESUMO

In this paper, a carbon dot hydrogel composite (CDs-Hy) capable of efficiently removing Pb(II) was prepared by hydrogen bonding self-assembly in combination with carbon dots and a hydrogel. CDs-Hy was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS), and the effect of the adsorption conditions on the adsorption efficiency of CDs-Hy was studied. The results of the study showed that the incorporation of carbon dots, on the one hand, significantly increased the adsorption capacity of the material. On the other hand, it can increase the stability of hydrogels in aqueous solution. The possible adsorption mechanisms were further verified as ion exchange and coordination. CDs-Hy is a novel adsorbent material capable of removing Pb2+ efficiently, which can be reused several times with high stability.

8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074787

RESUMO

Transcription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here, we constructed a TF model system using the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on DNA by employing all-atom molecular-dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to one strand of DNA with significant energetic bias compared with the other, or nonpreferred strand. The preferential DNA-strand binding becomes most prominent in the static process, from nonspecific to specific DNA binding, but less distinct during diffusive movements of the domain protein on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base-pair stepping cycle of the protein tracking along major groove of DNA with a homogeneous poly-adenosine sequence, as individual hydrogen bonds break and reform at the protein-DNA binding interface. Further DNA-groove tracking motions of the protein forward or backward, with occasional sliding as well as strand crossing to minor groove of DNA, were also captured. The processive diffusion of WRKY along DNA has been further sampled via coarse-grained MD simulations. The study thus provides structural dynamics details on diffusion of a small TF domain protein, suggests how the protein approaches a specific recognition site on DNA, and supports further high-precision experimental detection. The stochastic movements revealed in the TF diffusion also provide general clues about how other protein walkers step and slide along DNA.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , DNA de Plantas/química , Simulação de Dinâmica Molecular , Fatores de Transcrição/química , Domínios Proteicos
9.
J Transl Med ; 21(1): 411, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355621

RESUMO

BACKGROUND: Two cycles of neoadjuvant PD-1 blockade plus chemotherapy induced favorable pathological response and tolerant toxicity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). However, approximately 25% of patients relapsed within 1 year after surgery, indicating that a short course of treatment may not be sufficient. Therefore, exploring the effects of intensive treatment is needed for optimal clinical outcomes. METHODS: Locally advanced ESCC patients were administered three cycles of camrelizumab plus nab-paclitaxel and capecitabine, followed by thoracoscopic esophagectomy. The primary endpoint was pathologic response. Secondary endpoints included safety, feasibility, radiologic response, survival outcomes, and immunologic/genomic correlates of efficacy. RESULTS: Forty-seven patients were enrolled in the study. Forty-two patients received surgery, and R0 resection was achieved in all cases. The complete and major pathological response rates were 33.3% and 64.3%, respectively, and the objective response rate was 80.0%. Three cycles of treatment significantly improved T down-staging compared to two cycles (P = 0.03). The most common treatment-related adverse events were grades 1-2, and no surgical delay was reported. With a median follow-up of 24.3 months, the 1-year disease-free survival and overall survival rates were both 97.6%, and the 2-year disease-free survival and overall survival rates were 92.3% and 97.6%, respectively. Three patients experienced disease recurrence or metastasis ranging from 12.5 to 25.8 months after surgery, and one patient died 6 months after surgery due to cardiovascular disease. Neither programmed death-ligand 1 expression nor tumor mutational burden was associated with pathological response. An increased infiltration of CD56dim natural killer cells in the pretreatment tumor was correlated with better pathological response in the primary tumor. CONCLUSIONS: It seems probable that intensive cycles of neoadjuvant camrelizumab plus nab-paclitaxel and capecitabine increased tumor regression and improved survival outcomes. Randomized controlled trials with larger sample sizes and longer follow-up periods are needed to validate these findings. Trial registration Chinese Clinical Trial Registry, ChiCTR2000029807, Registered February 14, 2020, https://www.chictr.org.cn/showproj.aspx?proj=49459 .


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Terapia Neoadjuvante , Capecitabina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico
10.
Plant Cell ; 32(5): 1556-1573, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32102842

RESUMO

The Calvin-Benson-Bassham (CBB) cycle is responsible for CO2 assimilation and carbohydrate production in oxyphototrophs. Phosphoribulokinase (PRK) is an essential enzyme of the CBB cycle in photosynthesis, catalyzing ATP-dependent conversion of ribulose-5-phosphate (Ru5P) to ribulose-1,5-bisphosphate. The oxyphototrophic PRK is redox-regulated and can be further regulated by reversible association with both glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and oxidized chloroplast protein CP12. The resulting GAPDH/CP12/PRK complex is central in the regulation of the CBB cycle; however, the PRK-CP12 interface in the recently reported cyanobacterial GAPDH/CP12/PRK structure was not well resolved, and the detailed binding mode of PRK with ATP and Ru5P remains undetermined, as only apo-form structures of PRK are currently available. Here, we report the crystal structures of cyanobacterial (Synechococcus elongatus) PRK in complex with ADP and glucose-6-phosphate and of the Arabidopsis (Arabidopsis thaliana) GAPDH/CP12/PRK complex, providing detailed information regarding the active site of PRK and the key elements essential for PRK-CP12 interaction. Our structural and biochemical results together reveal that the ATP binding site is disrupted in the oxidized PRK, whereas the Ru5P binding site is occupied by oxidized CP12 in the GAPDH/CP12/PRK complex. This structure-function study greatly advances the understanding of the reaction mechanism of PRK and the subtle regulations of redox signaling for the CBB cycle.


Assuntos
Arabidopsis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotossíntese , Synechococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocatálise , Domínio Catalítico , Ligantes , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Ribulosefosfatos/metabolismo , Homologia Estrutural de Proteína
11.
J Integr Plant Biol ; 65(3): 739-754, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36308719

RESUMO

Plant cells contain only small amounts of mitochondrial DNA (mtDNA), with the genomic information shared among multiple mitochondria. The biological relevance and molecular mechanism underlying this hallmark of plant cells has been unclear. Here, we report that Arabidopsis thaliana plants exhibited significantly reduced growth and mitochondrial dysfunction when the mtDNA copy number was increased to the degree that each mitochondrion possessed DNA. The amounts of mitochondrion-encoded transcripts increased several fold in the presence of elevated mtDNA levels. However, the efficiency of RNA editing decreased with this excess of mitochondrion-encoded transcripts, resulting in impaired assembly of mitochondrial complexes containing mtDNA-encoded subunits, such as respiratory complexes I and IV. These observations indicate the occurrence of nuclear-mitochondrial incompatibility in the cells with increased amounts of mtDNA and provide an initial answer to the fundamental question of why plant cells have much lower mtDNA levels than animal cells. We propose that keeping mtDNA levels low moderates nuclear-mitochondrial incompatibility and that this may be a crucial factor driving plant cells to restrict the copy numbers of mtDNA.


Assuntos
Arabidopsis , Autoincompatibilidade em Angiospermas , Animais , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Mitocôndrias/genética , Arabidopsis/genética
12.
Biochem Biophys Res Commun ; 590: 34-41, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34968782

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Cancer Immunol Immunother ; 71(10): 2433-2448, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35249119

RESUMO

Even with progressive combination treatments, the prognosis of patients with glioblastoma (GBM) remains extremely poor. OV is one of the new promising therapeutic strategies to treat human GBM. OVs stimulate immune cells to release cytokines such as IFN-γ during oncolysis, further improve tumor microenvironment (TME) and enhance therapeutic efficacy. IFN-γ plays vital role in the apoptosis of tumor cells and recruitment of tumor-infiltrating T cells. We hypothesized that oncolytic herpes simplex virus-1 (oHSV-1) enhanced the antitumor efficacy of novel CD70-specific chimeric antigen receptor (CAR) T cells by T cell infiltration and IFN-γ release. In this study, oHSV-1 has the potential to stimulate IFN-γ secretion of tumor cells rather than T cell secretion and lead to an increase of T cell activity, as well as CD70-specific CAR T cells can specifically recognize and kill tumor cells in vitro. Specifically, combinational therapy with CD70-specific CAR T and oHSV-1 promotes tumor degradation by enhancing pro-inflammatory circumstances and reducing anti-inflammatory factors in vitro. More importantly, combined therapy generated potent antitumor efficacy, increased the proportion of T cells and natural killer cells in TME, and reduced regulatory T cells and transformed growth factor-ß1 expression in orthotopic xenotransplanted animal model of GBM. In summary, we reveal that oHSV-1 enhance the therapeutic efficacy of CD70-spefific CAR T cells by intratumoral T cell infiltration and IFN-γ release, supporting the use of CAR T therapy in GBM therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptores de Antígenos Quiméricos , Animais , Neoplasias Encefálicas/patologia , Ligante CD27 , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Interferon gama , Microambiente Tumoral
14.
Small ; 18(9): e2105118, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915595

RESUMO

The immunosuppressive tumor microenvironment (TME) can significantly limit the immunotherapeutic effects of the PD-L1 antibody (aPDL1) by inhibiting the infiltration of CD8+ cytotoxic T cells (CTLs) into the tumor tissues. However, how to reprogram the immunosuppressive TME and promote the infiltration of CTLs remains a huge challenge for aPDL1 to achieve the maximum benefits. Herein, the authors design a multifunctional immunoliposome that encapsulates the adrenergic receptor blocker carvedilol (CAR) and connects the "don't eat me" signal antibody (aCD47) and aPDL1 in series via a reactive oxygen species (ROS)-sensitive linker on the surface. In ROS-enriched immunosuppressive TME, the multifunctional immunoliposome (CAR@aCD47/aPDL1-SSL) can first release the outer aCD47 to block the "do not eat me" pathway, promote the phagocytosis of tumor cells by phagocytic cells, and activate CTLs. Then, the aPDL1 on the liposome surface is exposed to block the PD-1/PD-L1 signaling pathway, thereby inducing CTLs to kill tumor cells. CAR encapsulated in CAR@aCD47/aPDL1-SSL can block the adrenergic nerves in the tumor tissues and reduce their densities, thereby inhibiting angiogenesis in the tumor tissues and reprogramming the immunosuppressive TME. According to the results, CAR@aCD47/aPDL1-SSL holds an effective way to reprogram the immunosuppressive TME and significantly enhance immunotherapeutic efficiency of aPDL1 against the primary cancer and metastasis.


Assuntos
Antígeno B7-H1 , Melanoma , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Lipossomos/farmacologia , Melanoma/terapia , Microambiente Tumoral
15.
Nature ; 534(7605): 69-74, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251276

RESUMO

During photosynthesis, the plant photosystem II core complex receives excitation energy from the peripheral light-harvesting complex II (LHCII). The pathways along which excitation energy is transferred between them, and their assembly mechanisms, remain to be deciphered through high-resolution structural studies. Here we report the structure of a 1.1-megadalton spinach photosystem II-LHCII supercomplex solved at 3.2 Å resolution through single-particle cryo-electron microscopy. The structure reveals a homodimeric supramolecular system in which each monomer contains 25 protein subunits, 105 chlorophylls, 28 carotenoids and other cofactors. Three extrinsic subunits (PsbO, PsbP and PsbQ), which are essential for optimal oxygen-evolving activity of photosystem II, form a triangular crown that shields the Mn4CaO5-binding domains of CP43 and D1. One major trimeric and two minor monomeric LHCIIs associate with each core-complex monomer, and the antenna-core interactions are reinforced by three small intrinsic subunits (PsbW, PsbH and PsbZ). By analysing the closely connected interfacial chlorophylls, we have obtained detailed insights into the energy-transfer pathways between the antenna and core complexes.


Assuntos
Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/ultraestrutura , Spinacia oleracea/química , Carotenoides/química , Clorofila/química , Transporte de Elétrons , Subunidades Proteicas/química
16.
Ann Surg Oncol ; 28(7): 3930-3938, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33249523

RESUMO

BACKGROUND: The bilateral recurrent laryngeal nerve (RLN) lymph nodes are the most common metastatic site for esophageal squamous cell carcinoma (ESCC); however, the RLNs are susceptible to injury during dissection. Clinically, there is an urgent need to determine an effective diagnostic method for RLN nodes to help achieve selective nodal dissection and avoid potential serious complications by performing more conservative surgery for those with nonmetastatic nodes. Here, we innovatively applied endobronchial ultrasonography (EBUS) and investigated its diagnostic performance for preoperative evaluation of RLN nodes in ESCC patients. PATIENTS AND METHODS: All 81 enrolled ESCC patients underwent preoperative EBUS and CT examinations. The ability of EBUS and CT to detect RLN node metastasis was evaluated based on the resulting sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). RESULTS: The diagnostic performance of EBUS was superior to that of CT; in particular, EBUS of the left RLN (L-RLN) nodes presented the best sensitivity, specificity, PPV, NPV, and accuracy compared with EBUS evaluations of the right RLN (R-RLN) nodes, CT of the L-RLN and R-RLN nodes. Moreover, EBUS combined with CT increased the NPV relative to that of EBUS or CT alone, promoting the ability to identify true-negative RLN nodes. In particular, the NPVs of the combined modality were 100% for both the L- and R-RLN nodes in early-T-stage (T1-T2) ESCC. CONCLUSIONS: EBUS is an efficient tool for RLN node evaluation, and the combination with CT may provide better guidance for selective RLN node dissection in ESCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/cirurgia , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/cirurgia , Esofagectomia , Humanos , Excisão de Linfonodo , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Metástase Linfática , Nervo Laríngeo Recorrente/diagnóstico por imagem , Nervo Laríngeo Recorrente/cirurgia , Estudos Retrospectivos
17.
Opt Express ; 29(13): 20395-20405, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266130

RESUMO

Black silicon contains high-aspect-ratio micro/nanostructures with greatly suppressed front-surface reflection, thus possessing superior property in photoelectric devices. In this report, by a two-step copper-assisted chemical etching method, we have fabricated pyramid n+p-black silicon with optimized morphology and anti-reflectance capability, through systematically tuning the concentration of both copper ions and reducing agents, as well as the etching time. The improved optical absorption and superior charge transfer kinetics validate n+p-black silicon as a highly active photocathode in photoelectrochemical cells. The onset potential of 0.21 V vs. RHE and the saturation photocurrent density of 32.56 mA/cm2 are achieved in the optimal n+p-black silicon. In addition, the nanoporous structure with lower reflectance is also achieved in planar p-silicon via the same etching method. Moreover, the photodetectors based on planar p-black silicon show significantly enhanced photoresponsivity over a broad spectral range. This study offers a low-cost and scalable strategy to improve the photoelectric-conversion efficiency in silicon-based devices.

18.
Public Health Nutr ; 24(5): 984-992, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32312349

RESUMO

OBJECTIVE: To explore the scope of metabolic syndrome (MetS) and its relationship to the major dietary patterns among an urbanised and semi-urbanised Tibetan population in transition from nomadic to settled settings. DESIGN: Cross-sectional. SETTING: Community-based. PARTICIPANTS: Urbanised and semi-urbanised Tibetan adults (n 920, aged 18-90 years), who have moved from nomadic to settled living environments, answered questionnaires on food consumption frequency and lifestyle characteristics through structured face-to-face interviews and completed anthropometric measurement and metabolic biomarker tests. RESULTS: MetS prevalence was 30·1 % in males and 32·1 % in females. Low HDL-cholesterol and central obesity were the leading metabolic abnormalities (86·3 and 55·8 %, respectively). Three major dietary patterns - urban, western and pastoral - were identified. Beef/mutton was an important food group for all three identified dietary patterns. In addition, the urban dietary pattern was characterised by frequent consumption of vegetables, tubers/roots and refined carbohydrates; the western pattern was characterised by sweetened drinks, snacks and desserts; and the pastoral pattern featured tsamba (roasted Tibetan barley), Tibetan cheese, butter tea/milk tea and whole-fat dairy foods. Individuals in the highest quintile of urban dietary pattern scores were found to be at a higher risk of developing MetS (OR 2·43, 95 % CI 1·41, 4·18) and central obesity (OR 1·91, 95 % CI 1·16, 3·14) after controlling for potential confounders. CONCLUSIONS: MetS was common among urbanised and semi-urbanised Tibetan adult population in transition. The urban dietary pattern, in particular, was a risk factor for MetS. To prevent MetS, nutrition interventions need to be tailored to address the variety of local diet patterns to promote healthy eating.


Assuntos
Síndrome Metabólica , Adulto , Estudos Transversais , Dieta , Comportamento Alimentar , Feminino , Humanos , Masculino , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/etiologia , Fatores de Risco , Tibet
19.
Adv Exp Med Biol ; 1248: 485-530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185723

RESUMO

Macromolecule drugs particularly antibody drugs are very powerful therapies developing rapidly in the recent 20 years, providing hopes for many patients diagnosed with "incurable" diseases in the past. They also provide more effective and less side effects for many afflicting diseases, and greatly improve the survival rate and life quality of patients. In the last two decades, the proportion of US Food and Drug Administration (FDA) approved macromolecules and antibody drugs are increasing quickly, especially after the discovery of immune checkpoints. To crown all, the 2017 Nobel prize in physiology or medicine was given to immunotherapy. In this chapter, we would like to summarize the current situation of macromolecule and antibody drugs, and what effort scientists and pharmaceutical industry have made to discover and manufacture better antibody drugs.


Assuntos
Anticorpos/uso terapêutico , Imunoterapia , Preparações Farmacêuticas , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Aprovação de Drogas/legislação & jurisprudência , Indústria Farmacêutica , Humanos , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
20.
World J Surg Oncol ; 18(1): 168, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669129

RESUMO

BACKGROUND: In this study, we sought to evaluate the correlation between TV, GTD, and lymph node metastases in NSCLC patients with tumors of GTD ≤ 3.0 cm. METHODS: We retrospectively analyzed the characteristics of clinicopathologic variables for lymph node involvement in 285 NSCLC patients with tumors of GTD ≤ 3.0 cm who accepted curative surgical resection. The TVs were semi-automatically measured by a software, and optimal cutoff points were obtained using the X-tile software. The relationship between GTD and TV were described using non-linear regression. The correlation between GTD, TV, and N stages was analyzed using the Pearson correlation coefficient. The one-way ANOVA was used to compare the GTD and TV of different lymph node stage groups. RESULTS: The relationship between GTD and TV accorded with the exponential growth model: y = 0.113e1.455x (y = TV, x = GTD). TV for patients with node metastases (4.78 cm3) was significantly greater than those without metastases (3.57 cm3) (P < 0.001). However, there were no obvious GTD differences in cases with or without lymph node metastases (P = 0.054). We divided all cases into three TV groups using the two cutoff values (0.9 cm3 and 3.9 cm3), and there was an obvious difference in the lymphatic involvement rate between the groups (P < 0.001). The tendency to metastasize was greater with higher TV especially when the TV was > 0.9-14.2 cm3 (P = 0.010). CONCLUSIONS: For NSCLC tumors with GTD ≤ 3.0 cm, TV is a more sensitive marker than GTD in predicting the positive lymph node metastases. The likelihood for metastasis increases with an increasing TV especially when GTD is > 2.0-3.0 cm.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Excisão de Linfonodo , Linfonodos/patologia , Linfonodos/cirurgia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA