Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 7102-7116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837281

RESUMO

Global warming has significantly affected terrestrial ecosystems. Biomass and C:N:P stoichiometry of plants and soil is crucial for enhancing plant productivity, improving human nutrition, and regulating biogeochemical cycles. However, the effect of warming on the biomass and C:N:P stoichiometry of different components (plant, leaf, stem, root, litter, soil, and microbial biomass) in various terrestrial ecosystems remains uncertain. We conducted a comprehensive meta-analysis to investigate the global patterns of biomass and C:N:P stoichiometry responses to warming, as well as interaction relationships based on 1399 paired observations from 105 warming studies. Results indicated that warming had a significant impact on various aspects of plant growth, including an increase in plant biomass (+16.55%), plant C:N ratio (+4.15%), leaf biomass (+16.78%), stem biomass (+23.65%), root biomass (+22.00%), litter C:N ratio (+9.54%) and soil C:N ratio (+5.64%). However, it also decreased stem C:P ratio (-23.34%), root C:P ratio (-12.88%), soil N:P ratio (-14.43%) and soil C:P ratio (-16.33%). The magnitude of warming was the primary drivers of changes of biomass and C:N:P stoichiometry. By establishing the general response curves of changes in biomass and C:N:P ratios with increasing temperature, we demonstrated that warming effect on plant, root, and litter biomass shifted from negative to positive, whereas that on leaf and stem biomass changed from positive to negative as temperature increased. Additionally, the effect of warming on root C:N ratio, root biomass, and microbial biomass N:P ratios shifted from positive to negative, whereas the effects on plant N:P, leaf N:P, leaf C:P, root N:P ratios, and microbial biomass C:N ratio changed from negative to positive with increasing temperature. Our research can help assess plant productivity and optimize ecosystem stoichiometry precisely in the context of global warming.


Assuntos
Ecossistema , Aquecimento Global , Humanos , Biomassa , Nitrogênio/análise , Plantas , Solo , Carbono
2.
Environ Monit Assess ; 191(1): 40, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593592

RESUMO

The Altun Mountain National Nature Reserve (AMNNR), characterized by complex topography, is located on the northern edge of the Qinghai-Tibetan Plateau. The stocks of soil organic carbon (SOC) and total nitrogen (TN) are critically important for carbon and nitrogen sequestration in dry alpine ecosystems of the AMNNR, which is a "natural laboratory" for assessing the carbon and nitrogen storage without human disturbance. We explored the stocks of SOC and TN in soils of different dry alpine ecosystems by sampling 23 sites across the AMNNR during 2013. The results showed that the SOC and TN stocks of AMNNR varied significantly with ecosystem types. The SOC stocks of 0-15 cm were highest in the alpine wet meadow (7.96 kg/m2), followed by alpine steppe (2.63 kg/m2). The stocks of SOC and TN in 0-5 and 5-10 cm soils of alpine wet meadow were significantly (P < 0.05) higher than those in the soils of other dry alpine ecosystems. In the whole AMNNR, total storage of SOC and TN were approximately 80.97 and 4.48 Tg, 34.25% of SOC and 24.01% of TN were stored in the alpine steppe, 21.51% of SOC and 26.01% of TN were stored in the alpine scrub, the largest ecosystem in the AMNNR. Our findings suggested it is important to protect the soil and vegetation of the dry alpine ecosystems, particularly the alpine wet meadow and alpine scrub to promote the carbon storage.


Assuntos
Carbono/análise , Ecossistema , Nitrogênio/análise , Solo/química , China , Conservação dos Recursos Naturais , Monitoramento Ambiental , Plantas
3.
Environ Monit Assess ; 186(10): 6903-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023744

RESUMO

A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental , Plantas/classificação , Solo/química , Carbono/análise , China , Nitrogênio/análise , Desenvolvimento Vegetal , Poaceae/fisiologia
4.
Sci Total Environ ; 927: 172006, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554978

RESUMO

Grasslands account for approximately one-third of the global terrestrial carbon stocks. However, a limited understanding of the impact of grazing exclusion on carbon storage in grassland ecosystems hinders progress towards restoring overgrazed grasslands and promoting carbon sequestration. In this study, we conducted a comprehensive meta-analysis to investigate the effects of grazing exclusion on aboveground biomass (AGB) and soil organic carbon (SOC) in four grasslands: alpine grasslands (AP), tropical savannas (TS), temperate subhumid grasslands (TG), and a semi-desert steppe (SD). Our meta-analysis indicated that grazing exclusion significantly enhanced carbon sequestration in grassland ecosystems, and the benefits of carbon sequestration were most pronounced in the AP, followed by the TG, SD, and TS. Grazing exclusion duration (DUR) was a significant factor associated with the response of aboveground biomass (AGB) and soil organic carbon (SOC) to grazing exclusion. Moreover, the relationships between AGB and DUR were nonlinear, with existence thresholds of 18, 21, 12, 19, and 23 years in global grasslands (ALL), AP, TS, TG, and SD, respectively. However, the relationship between SOC and DUR was linear, with SOC continuing to increase as DUR increased (up to 40 years). The multi-objective optimization indicated that the optimal duration of grazing exclusion for grassland carbon sequestration was 18-20, 21-23, 12-14, 19-21, and 23-25 years for ALL, AP, TS, TG, and SD, respectively. Our study contributes to the enhancement of grazing management and offers better options for increasing carbon sequestration in grasslands.


Assuntos
Biomassa , Sequestro de Carbono , Carbono , Pradaria , Solo , Solo/química , Carbono/análise , Herbivoria , Animais
5.
Sci Total Environ ; 867: 161403, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621506

RESUMO

A large number of individual studies and meta-analyses have shown that microplastics (MPs) affect soil ecosystems. However, the effects of different concentrations and types of MPs on soil ecosystem are still unclear. Here, a comprehensive meta-analysis was performed to examine the responses of 19 variables, associated with soil properties, microbes, enzymes, and fauna, to MPs, based on 114 peer-reviewed studies. The results showed that the addition of MPs significantly reduced the soil organic carbon (SOC), total nitrogen (TN), NH4+-N, pH, and diversity of bacteria, and increased the dissolved organic carbon (DOC), diversity of fungi and enzyme activities, especially enzymes related to the biogeochemical cycle. We further discussed that soil MPs exerted negative effects on soil fauna, including survival, growth, and reproduction, and that the concentration of MPs, rather than the type, was the biggest driving factor causing the toxicity of MPs affecting soil animals. More importantly, the concentrations of MPs were the main factor affecting the DOC, TN, NO3--N, total phosphorus (TP), available phosphorus (AP), and diversity of fungi, whereas the types of MPs were the main factors reflected in the SOC, NH4+-N, pH, diversity of bacteria, and enzyme activities. This study aimed to evaluate the response of soil ecosystems to the different concentrations and types of MPs, and the largest driving factor for the toxicity of MPs.


Assuntos
Ecossistema , Microplásticos , Animais , Plásticos , Solo/química , Carbono , Nitrogênio , Fósforo , Bactérias
6.
Front Plant Sci ; 13: 822268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185987

RESUMO

Elevation gradient can reflect the effects of soil physico-chemical properties on plant species diversity. Alpine grassland on the QTP has suffered from a serious decline in plant species diversity. In this study, we investigated 112 sites recording plant community characteristics and collecting soil samples along an elevation gradient (3,500-5,200 m asl) in alpine meadow on the QTP. We analyzed the effects of soil physico-chemical properties on plant species composition and diversity by canonical ordination and spatial regression along an elevation gradient. The results showed that species richness of the overall plant communities decreased with the increasing elevation, and the Simpson dissimilarity index (ß sim ) had a maximum at low elevation (3,500-4,000 m) with the value of 0.37. Soil available nitrogen content was the primary soil parameter affecting plant species composition and diversity in alpine grassland. The effect of soil available nitrogen content on plant species richness varied at different elevations. For Gramineae plants (G), plant species richness declined with the increase in soil available nitrogen content at low elevation (3,500-4,000 m), but rose at middle elevation (4,000-4,500 m). Soil available nitrogen content had a more significant limiting effect on species richness at high elevation (>4,500 m). These findings increase our understanding about the drivers of plant species diversity changes in alpine grassland on the QTP, and will provide insights into grassland restoration and sustainable management.

7.
Front Plant Sci ; 12: 827618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111189

RESUMO

Ignoring the responses of local households to ecological protection policies can not only seriously limit sustainable development of the alpine grassland ecosystem, but also not improve livelihood on the Qinghai-Tibetan Plateau (QTP). It is of vital importance to clearly understand coupling feedback and trigger between household decision-making of local herdsmen with the implementation of ecological protection policies. We selected Sanjiangyuan National Park (SNP) as the study area which was in the hinterland of the QTP and the first national park in China. We used the global rangeland (G-Range) model to simulate alpine grassland changes and DEcisions under Conditions of Uncertainty by Modeled Agents (DECUMA) model to identify household decision-making of local herdsmen. Results showed that: (1) distribution of livestock density was basically consistent with the distribution of habitat suitability of local households in the SNP; (2) more than half of the uneducated households (52 and 70%) opposed the eco-compensation and eco-migration policies; (3) most of the households (53.7%) never traded livestock for maintaining their livelihood; and (4) When local households owed 65,000 yuan (≈10,000 dollars) in debts, as the critical value (trigger), they traded livestock to support their livelihood. We suggest that feedback and trigger of household decision-making should be fully considered by managers of national park and policymakers of local governments in planning ecological protection policies to maintain sustainable development of alpine grassland, which is of practical significance to long-term conservation and sustainable utilization of natural resources in the SNP.

8.
Front Plant Sci ; 12: 821954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069673

RESUMO

Alpine grassland is the main ecosystem on the Qinghai-Tibet Plateau (QTP). Degradation and restoration of alpine grassland are related to ecosystem function and production, livelihood, and wellbeing of local people. Although a large number of studies research degraded alpine grassland, there are debates about degradation patterns of alpine grassland in different areas and widely applicable ecological restoration schemes due to the huge area of the QTP. In this study, we used the meta-analysis method to synthesize 80 individual published studies which were conducted to examine aboveground and underground characteristics in non-degradation (ND), light degradation (LD), moderate degradation (MD), heavy degradation (HD), and extreme degradation (ED) of alpine grassland on the QTP. Results showed that aboveground biomass (AGB), belowground biomass (BGB), Shannon-Wiener index (H'), soil moisture (SM), soil organic carbon (SOC), soil total nitrogen (TN), and available nitrogen (AN) gradually decreased along the degradation gradient, whereas soil bulk density (BD) and soil pH gradually increased. In spite of a tendency to soil desertification, losses of other soil nutrients and reduction of enzymes, there was no linear relationship between the variations with degradation gradient. Moreover, the decreasing extent of TN was smaller in areas with higher precipitation and temperature, and the decreasing extent of AGB, SOC, and TN was larger in areas with a higher extent of corresponding variables in the stage of ND during alpine grassland degradation. These findings suggest that in areas with higher precipitation and temperature, reseeding and sward cleavage can be used for restoration on degraded alpine grassland. Fencing and fertilization can be used for alpine grassland restoration in areas with lower precipitation and temperature. Microbial enzymes should not be used to restore degraded alpine grassland on a large scale on the QTP without detailed investigation and analysis. Future studies should pay more attention to the effects of climate factors on degradation processes and specific ecological restoration strategies in different regions of the QTP.

9.
Plants (Basel) ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34961187

RESUMO

The ability of fragile ecosystems of alpine regions to adapt and thrive under warming and nitrogen deposition is a pressing conservation concern. The lack of information on how these ecosystems respond to the combined impacts of elevated levels of nitrogen and a warming climate limits the sustainable management approaches of alpine grasslands. In this study, we experimented using a completely random blocked design to examine the effects of warming and nitrogen deposition on the aboveground biomass and diversity of alpine grassland plant communities. The experiment was carried out from 2015 to 2018 in four vegetation types, e.g., alpine desert, alpine desert steppe, alpine marsh, and alpine salinised meadow, in the Aerjin Mountain Nature Reserve (AMNR) on the Qinghai-Tibetan Plateau (QTP). We found that W (warming) and WN (warming plus N deposition) treatment significantly increased the aboveground biomass of all the vegetation types (p < 0.05) in 2018. However, W and WN treatment only significantly increased the Shannon diversity of salinised meadows in 2018 and had no significant effect on the Shannon diversity of other vegetation types. Such results suggested that long-term nitrogen deposition and warming can consistently stimulate biomass accumulation of the alpine plant communities. Compared with other vegetation types, the diversity of alpine salinised meadows are generally more susceptible to long-term warming and warming combined with N deposition. Warming accounts many of such variabilities, while short-term N deposition alone may not significantly have an evident effect on the productivity and diversity of alpine grasslands. Our findings suggested that the effects of short-term (≤4 years) N deposition on alpine vegetation productivity and diversity were minimal, while long-term warming (>4 years) will be much more favourable for alpine vegetation.

10.
Sci Rep ; 7: 43077, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262753

RESUMO

To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.


Assuntos
Bactérias/metabolismo , Biomassa , Fungos/metabolismo , Microbiologia do Solo , Carbono/metabolismo , Pradaria , Nitrogênio/metabolismo , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA