Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nanomedicine ; 52: 102696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394108

RESUMO

Diabetic nephropathy (DN) is an important complication of diabetes and is the main cause of end-stage renal disease. The pathogenesis of DN is complex, including glucose and lipid metabolism disorder, inflammation, and so on. Novel hybrid micelles loaded Puerarin (Pue) based on Angelica sinensis polysaccharides (ASP) and Astragalus polysaccharide (APS) were fabricated with pH-responsive ASP-hydrazone-ibuprofen (BF) materials (ASP-HZ-BF, SHB) and sialic acid (SA) modified APS-hydrazone-ibuprofen materials (SA/APS-HZ-BF, SPHB) by thin-film dispersion method. The SA in hybrid micelles can specifically bind to the E-selectin receptor which is highly expressed in inflammatory vascular endothelial cells. The loaded Pue could be accurately delivered to the inflammatory site of the kidney in response to the low pH microenvironment. Overall, this study provides a promising strategy for developing hybrid micelles based on natural polysaccharides for the treatment of diabetic nephropathy by inhibiting renal inflammatory reactions, and antioxidant stress.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Portadores de Fármacos , Selectina E , Isoflavonas , Concentração de Íons de Hidrogênio , Selectina E/metabolismo , Micelas , Neuropatias Diabéticas/tratamento farmacológico , Isoflavonas/administração & dosagem , Angelica sinensis/química , Astrágalo/química , Polissacarídeos/química , Rim , Inflamação/tratamento farmacológico , Ibuprofeno/química , Ácidos Siálicos/química , Ligação Proteica , Diabetes Mellitus Experimental/induzido quimicamente , Estreptozocina , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL
2.
Nanomedicine ; 44: 102570, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623564

RESUMO

Ischemic stroke is an acute and severe neurological disease, resulting in disability and death. The poor drug delivery to cerebral ischemic regions is a key challenge of ischemic stroke treatment. Inspired by the ability of Macrophage membranes to cross the blood-brain barrier, We prepared amphiphilic nanoparticles (AOE@TMP) by linking Angelica polysaccharide (APS) and Ethyl ferulate (EF) using oxalate bond (OL) as the linker arm, with an inner core encapsulated with Tetramethylpyrazine (TMP), and finally using macrophage membrane camouflage (MAOE@TMP). The experimental results show that MAOE@TMP can successfully deliver drugs to the site of brain injury and specifically release it in the microenvironment of the brain injury site, and the three active ingredients in the herb pair could potentiate and significantly reduce the cerebral infarction size.


Assuntos
Angelica , Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Polissacarídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico
4.
Carbohydr Polym ; 346: 122637, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245502

RESUMO

Tumor vaccines have become a promising approach for cancer treatment by triggering antigen-specific responses against tumors. However, autophagy and immunosuppressive tumor microenvironment (TME) reduce antigen exposure and immunogenicity, which limit the effect of tumor vaccines. Here, we develop fucoidan (Fuc) based chlorin e6 (Ce6)-chloroquine (CQ) self-assembly hydrogels (CCFG) as in situ vaccines. Ce6 triggers immune response in situ by photodynamic therapy (PDT) induced immunogenic cell death (ICD) effect, which is further enhanced by macrophage polarization of Fuc and autophagy inhibition of CQ. In vivo studies show that CCFG effectively enhances antigen presentation under laser irradiation, which induces a powerful in situ vaccine effect and significantly inhibits tumor metastasis and recurrence. Our study provides a novel approach for enhancing tumor immunotherapy and inhibiting tumor recurrence and metastasis.


Assuntos
Autofagia , Vacinas Anticâncer , Clorofilídeos , Cloroquina , Hidrogéis , Imunoterapia , Macrófagos , Fotoquimioterapia , Polissacarídeos , Porfirinas , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/imunologia , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Autofagia/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Imunoterapia/métodos , Fotoquimioterapia/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cloroquina/farmacologia , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Células RAW 264.7 , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos Endogâmicos BALB C , Feminino
5.
Artif Cells Nanomed Biotechnol ; 51(1): 131-138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36912372

RESUMO

Osteoporosis is a common disease among the ageing society. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) is the aetiology of osteoporosis. α-Lipoic acid (ALA) is an antioxidant in the body, which can eliminate excess ROS in the body and inhibits levels of oxidative stress in cells. Herein, we designed PEGylated hollow gold nanoparticles (HGNPs) loaded with ALA (mPEG@HGNPs-ALA) to remove ROS in the treatment of osteoporosis. First, mPEG@HGNPs with a particle size of ∼63 nm has been successfully synthesized. By comparing the drug loading of mPEG@HGNPs, it was concluded that the optimal mass ratio of mPEG@HGNPs (calculated by the amount of gold) to ALA was ∼1:2. ABTS antioxidant assay showed that free radical removal ability. In vitro results revealed that the preparation had good biocompatibility. At the gold concentration of 1-150 µg/mL, the cell viability of mPEG@HGNPs was more than 100%, which indicated that it could promote the proliferation of osteoblasts. What's more, mPEG@HGNPs-ALA could effectively remove the ROS caused by H2O2 injury and improve the cell viability. According to these results, it can be considered that mPEG@HGNPs-ALA has the potential to treat osteoporosis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Osteoporose , Ácido Tióctico , Humanos , Ouro , Antioxidantes , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio
6.
Artif Cells Nanomed Biotechnol ; 51(1): 170-179, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37014123

RESUMO

Tumour development is not only an independent event of genetic mutation and overgrowth of tumour cells but is the result of a synergistic interaction between a malignant tumour and its surrounding tumour stromal microenvironment. In this paper, we address the shortcomings of current tumour therapy by focussing on the tumour itself and the surrounding microenvironment to achieve a two-pronged targeting model. In this paper, a dual-targeting, pH/reactive oxygen species (ROS) sensitive nano-drug delivery system for tumour cells and CAFs was designed. A hyaluronic acid (HA) with CD44 receptor targeting on the surface of tumour cells was selected as the main carrier material, and a dipeptide Z-glycine-proline (ZGP) with specific targeting of fibroblast activating protein (FAP) on the surface of CAFs was modified on HA to achieve precise targeting of CAFs, open the physical barrier of tumour cells and improve the deep penetration effect of the tumour, while introducing thioketone bond and ketone condensation bond to take advantage of the highly reactive ROS and low pH microenvironment at the tumour site to achieve chemical bond breaking of nano micelles encapsulating paclitaxel (PTX), drug release, and thus drug aggregation at the tumour site and improved bioavailability of the drug.


Assuntos
Neoplasias Hepáticas , Paclitaxel , Humanos , Paclitaxel/química , Micelas , Espécies Reativas de Oxigênio , Neoplasias Hepáticas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Int J Biol Macromol ; 214: 278-289, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716787

RESUMO

Oxidative stress and inflammation are two key pathophysiological mechanisms that lead to neuronal apoptosis and brain damage following ischemia/reperfusion (I/R) injury. Because of their complex pathological mechanisms and the presence of the blood-brain barrier, the treatment of I/R is severely limited. Inspired by the fact that Macrophage membranes (MM) can cross the blood-brain barrier, we have developed a new multifunctional bionic particle (MSAOR@Cur). The modification of Sialic acid (SA) on the surface of Angelica polysaccharides (APS), the attachment of Resveratrol (Res) using the ROS-responsive bond oxalate bond as a linker arm, constitutes amphiphilic nanoparticles with an inner core encapsulated with curcumin (SAOR@Cur), and finally the use of MM camouflage to integrate the neuroprotection of APS, the free radical scavenging of Res, and the anti-inflammation of curcumin (Cur) in one strategy. Interestingly, the experimental results show that MSAOR@Cur can successfully deliver curcumin to the area of ischemia-reperfusion injury.


Assuntos
Curcumina , Nanopartículas , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Ácido N-Acetilneuramínico/química , Nanopartículas/química , Estresse Oxidativo , Polissacarídeos/química , Traumatismo por Reperfusão/tratamento farmacológico , Resveratrol
8.
Drug Deliv ; 29(1): 2743-2750, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35999702

RESUMO

Liposomes have been widely used for targeted drug delivery, but the disadvantages caused by cholesterol limit the application of conventional liposomes in cancer treatment. The compatibility basis of couplet medicines and the compatibility principle of the traditional Chinese medicine principle of 'monarch, minister, assistant and guide' are the important theoretical basis of Chinese medicine in the treatment of tumor and the important method to solve the problem of high toxicity. In this study, the active ingredients of the couplet medicines Platycodon grandiflorum and Glycyrrhiza uralensis were innovatively utilized, and glycyrrhizic acid (GA) was encapsulated in liposomes constructed by mixing saponin and lecithin, and cholesterol was replaced by platycodin and ginsenoside to construct saponin liposomes (RP-lipo) for the drug delivery system of Chinese medicine. Compared with conventional liposomes, PR-lipo@GA has no significant difference in morphological characteristics and drug release behavior, and also shows stronger targeting of lung cancer cells and anti-tumor ability in vitro, which may be related to the pharmacological properties of saponins themselves. Thus, PR-lipo@GA not only innovatively challenges the status of cholesterol as a liposome component, but also provides another innovative potential system with multiple functions for the clinical application of TCM couplet medicines.


Assuntos
Glycyrrhiza uralensis , Neoplasias Pulmonares , Platycodon , Saponinas , Ácido Glicirrízico/farmacologia , Humanos , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Raízes de Plantas , Saponinas/farmacologia
9.
J Drug Target ; 30(4): 450-462, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927506

RESUMO

With the increasing number of oncology patients and the use of chemotherapeutic agents, tumour multidrug resistance is becoming more and more prevalent. The search for new tumour treatment strategies to overcome tumour multidrug resistance is urgent. In this study, we designed GSH and ROS dual-responsive tumour-associated macrophages (TAMs)-targeted nanoparticles (NPs) for the co-delivery of the clinical first-line anti-breast cancer chemotherapy drug paclitaxel (PTX) and baicalin (Bai), which re-educates TAMs to alter their phenotype. We synthesised oligohyaluronic acid-mannose-folic acid (oHA-Man-FA, HMF) and astragalus polysaccharide-dithiodipropionic acid-paeoniflorol (APS-S-Pae, ASP), two hybrid materials that can self-assemble in water to form hybrid nanoparticles (HP-NPs) co-loaded with paclitaxel and baicalin (HP-NPs@PTX/Bai). The experimental results show that our designed hybrid nanoparticles can be specifically released in the tumour microenvironment and deliver the antitumor drug PTX as well as Bai, which reshapes the phenotype of TAMs, to the tumour site. The hybrid nanoparticles not only effectively re-educated TAMs from M2 TAM to M1 TAM, but also ameliorated the cytotoxic side effects caused by free PTX and provided better tumour suppression than free PTX and HP.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Receptor alfa de Estrogênio , Feminino , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Polissacarídeos , Microambiente Tumoral , Macrófagos Associados a Tumor
10.
Int J Biol Macromol ; 202: 112-121, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35041879

RESUMO

Chemodynamic therapy (CDT) has been widely used in the treatment of many kinds of tumors, which can effectively induce tumor cell apoptosis by using produced reactive oxygen species (ROS). In this paper, ROS-sensitive multifunctional marine biomaterial natural polysaccharide nanoparticles were designed. Aggregation-induced emission (AIE) molecules tetraphenylethylene (TPE) labeled and caffeic acid (CA) modified fucoidan (FUC) amphiphilic carrier material (CA-FUC-TK-TPE, CFTT) was fabricated, in which the thioketal bond(TK) was used as the linkage arm between TPE and fucoidan chain, giving the CFTT material ROS sensitivity. In addition, amphiphilic carrier material (FUC-TK-VE, FTVE) composed of thioketal-linked vitamin E and fucoidan was synthesized. The mixed carrier material CFTT and FTVE self-assembled in water to form nanoparticles (CFTT - FTVE@PTX-Fe3+) loaded with PTX and Fe3+. The CDT effect was combined with the chemotherapeutic drug PTX to achieve tumor inhibition. In vitro cell studies have proved that CT/PTX nanoparticles have excellent cell permeability and tumor cytotoxicity. In vivo antitumor experiments confirmed effective antitumor activity and reduced side effects.


Assuntos
Materiais Biocompatíveis , Nanopartículas , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio
11.
ACS Omega ; 7(46): 42339-42346, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440107

RESUMO

For the therapy attenuating renal ischemia-reperfusion (IR) injury, a novel drug delivery system was urgently needed, which could precisely deliver drugs to the pathological renal tissue. Here, we have prepared new nanomaterials with a reactive oxygen species (ROS)-responsive hydrogen sulfide (H2S) donor and hyaluronic acid that targets CD44 receptor. The novel material was synthesized and characterized via related experiments. Then, rapamycin was loaded, which inhibited kidney damage. In the in vitro study, we found that the micelles had ROS-responsiveness, biocompatibility, and cell penetration. In addition, the experimental results showed that the intracellular H2S concentration after administration was threefold higher than that of the control group. The western blot assay revealed that they have anti-inflammatory effects via H2S donor blocking the NF-κB signaling pathway. Consequently, the rising CD44 receptor-targeting and ROS-sensitive H2S donor micelles would provide a promising way for renal IR injury. This work provides a strategy for improving ischemia/reperfusion injury for pharmaceuticals.

12.
Drug Deliv ; 29(1): 138-148, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34967268

RESUMO

Based on the tumor hypoxic microenvironment and the new programmed cell death mode of combined ferroptosis, an angelica polysaccharide-based nanocarrier material was synthesized. The polymer contains hydrophilic angelica polysaccharide (ASP) that is linked by azobenzene (AZO) linker with ferrocene (Fc), and then the side chain was covalently modified with arachidonic acid (AA). It was postulated that the polymer micelles could work as an instinctive liver targeting drug delivery carrier, owing to the existence of ASP with liver targeting. Moreover, the aim was to engineer hypoxia-responsive polymer micelles which was modified by AA, for selective enhancement of ferroptosis in solid tumor, via diminishing glutathione (GSH) under hypoxia. Finally, we synthesized the amphiphilic polymer micelles AA/ASP-AZO-Fc (AAAF) by self-assembling. The structure of AAAF was confirmed by 1H-NMR and FT-IR. Then, we exemplified the hydrophobic medication curcumin into polymer micelles AAAF@Cur, which has smooth and regular spheres. In vitro release test affirmed that AAAF@Cur can achieve hypoxia response to drug release. In addition, a series of cell experiments confirmed that hypoxia could enhance cell uptake and effectively improve the proliferation inhibitory activity of HepG2 cells. In conclusion, AAAF, as an effective cell carrier, is expected to develop in sensitizing ferroptosis and anti-tumor.


Assuntos
Angelica , Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Polissacarídeos/farmacologia , Ácido Araquidônico/química , Compostos Azo/química , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Compostos Ferrosos/química , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metalocenos/química , Micelas , Tamanho da Partícula , Polissacarídeos/administração & dosagem , Propriedades de Superfície
13.
Int J Biol Macromol ; 202: 691-706, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35124019

RESUMO

Pneumonia can lead to high morbidity and mortality secondary to uncontrolled inflammation of the lung tissue. Blocking cytokine storm storms may be the key to saving the life of patients with severe pneumonia. According to the medicinal guide theory of Traditional Chinese Medicine (TCM) and the inherent affinity with macrophages for the site of inflammation, we constructed the drug delivery platform (MNPs) derived from macrophage-membrane encapsulated reaction oxygen species (ROS)-responsive Platycodon grandiflorum polysaccharides (PGP) nanoparticles (PNPs) to calm the cytokine storm and improve lung inflammation. By loading the anti-inflammatory agent Curcumin (Cur), we demonstrated that MNPs@Cur significantly attenuated inflammation and cytokine storm syndrome in acute lung injury (ALI) mice by suppressing pro-inflammatory factor production and inflammatory cell infiltration. Interestingly, we observed that the PNPs also have potent pulmonary targeting ability compared to other polysaccharide carriers, which is in line with the medicinal guide theory of TCM. Our study revealed the rational design of drug delivery platforms to improve the treatment of lung injury, which inherits and develops the important theories of TCM through the perfect combination of guide theory and biomimetic nanotechnology and provides the experimental scientific basis for the clinical application of channel ushering drugs.


Assuntos
Curcumina , Platycodon , Pneumonia , Animais , Curcumina/farmacologia , Síndrome da Liberação de Citocina , Humanos , Camundongos , Pneumonia/tratamento farmacológico , Polissacarídeos
14.
Int J Biol Macromol ; 211: 259-270, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35513096

RESUMO

Currently, very limited therapeutic approaches are available for the drug treatment of atherosclerosis(AS). H2S-donor is becoming a common trend in much life-threatening research. Several studies have documented that H2S-lyase is predominantly present in endothelial cells. N-Acetylneuraminic acid (SA), natural carbohydrate, binds specifically to the E-selectin receptor of endothelial cells. Meanwhile, recent studies related to Chondroitin sulfate have excellent target binding ability with CD44 receptor. We conjecture that the N-Acetylneuraminic acid and Chondroitin sulfate modified nanomicelles not only enhances the accumulation of the drug but also cleaves the H2S donor in the lesion, thus one stone two birds. Given these findings, we synthesized two kinds of nanoparticles, Carrier I (SCCF) and Carrier II (SCTM), for atherosclerosis to validate our guesses. Initially, S-allyl-L-cysteine and 4-methoxyphenylthiourea were used as H2S donors for SCCF and SCTM, respectively. After the introduction of ROS-sensitive groups. Then, micelles with N-Acetylneuraminic acid and Chondroitin sulfate were prepared to load rapamycin(RAP). Further, in atherosclerosis Oil Red O staining (ORO) results confirmed remarkable treatment effect with SCCF@RAP and SCTM@RAP. Thus, we conclude that the effect of dual-targeting nanomicelles with ROS-sensitive H2S donor based on N-Acetylneuraminic acid and Chondroitin sulfate will have a better role in atherosclerosis.


Assuntos
Aterosclerose , Sulfatos de Condroitina , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacologia , Selectina E , Células Endoteliais/metabolismo , Humanos , Receptores de Hialuronatos , Ácido N-Acetilneuramínico/metabolismo , Espécies Reativas de Oxigênio
15.
Drug Deliv ; 29(1): 454-465, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35119317

RESUMO

Rheumatoid arthritis (RA) is an ordinarily occurring autoimmune disease with systemic inflammatory. Targeted drug delivery systems have many successful applications in the treatment of rheumatoid arthritis. In order to develop nanoparticles for targeted delivery of Celastrol (Cel) to rheumatoid arthritis and specific drug release, the dextran sulfate (DS) was modified as the targeting molecular by binding to the scavenger receptor of macrophage. The dextran-sulfate-PVGLIG-celastrol (DS-PVGLIG-Cel), named DPC, amphiphilic polymeric prodrug was synthesized and characterized. The resulting DPC@Cel micelles had the average size of 189.9 nm. Moreover, the micelles had ultrahigh entrapment efficiency (about 44.04%) and zeta potential of -11.91 mV. In the in vitro release study, due to the excessive production of matrix metalloproteinase-2 (MMP-2) at the inflammatory joint, the MMP-2 reactive peptide was used to crack in the inflammatory microenvironment to accelerate the release of Cel. The results have shown that the nanoparticles can effectively deliver Cel to activated macrophages and significantly improve the bioavailability. In vivo experiments showed that DPC@Cel have better anti-rheumatoid arthritis effects and lower systemic toxicity than free Cel. This study provided a new therapeutic strategy for the treatment of RA.


Assuntos
Artrite Reumatoide/patologia , Sulfato de Dextrana/química , Metaloproteinase 2 da Matriz/química , Nanopartículas/química , Triterpenos Pentacíclicos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Modelos Animais de Doenças , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Camundongos , Micelas , Tamanho da Partícula , Triterpenos Pentacíclicos/administração & dosagem , Células RAW 264.7 , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
19.
Exp Ther Med ; 13(5): 2570-2576, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28565881

RESUMO

Nonsyndromic cleft lip with or without cleft palate (NSCLP) has been recognized as a condition resulting from a combination of environmental and genetic factors. Studies have demonstrated that microRNAs (miRNAs) are involved in embryonic development. However, few studies have focused on screening potential target miRNAs in human NSCLP tissue. Using microarray-based miRNA expression profiling, miRNA expression was compared in tissue samples from 4 NSCLP patients and 4 healthy control subjects. Two hundred and fifty-four miRNAs were found to be differentially expressed. Changes in Homo sapiens (hsa)-miR-24-3p, hsa-miR-27b-3p, hsa-miR-205-5p, hsa-miR-1260b and hsa-miR-720 were of particular interest with respect to Wnt signaling (fold-changes were 12.5, 12.2, 12.1, 12.3 and 10.5, respectively; P<0.005 for all). The levels of hsa-miR-24-3p, hsa-miR-1260b and hsa-miR-205-5p were higher in tissues from NSCLP patients than in those from controls according to PCR analysis. Hsa-miR-24-3p, hsa-miR-1260b and hsa-miR-205-5p may be candidate miRNAs involved in the etiology of NSCLP via Wnt signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA