Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rep Prog Phys ; 87(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957917

RESUMO

Cluster states are key resources for measurement-based quantum information processing. Photonic cluster and graph states, in particular, play indispensable roles in quantum network and quantum metrology. We demonstrate a semiconductor quantum dot based device in which the confined hole spin acts as a needle in a quantum knitting machine producing continuously and deterministically at sub-Gigahertz repetition rate single indistinguishable photons which are all polarization entangled to each other and to the spin in a one dimensional cluster state. By projecting two nonadjacent photons onto circular polarization bases we disentangle the spin from the photons emitted in between. This way we demonstrate a novel way for producing deterministic and continuous all-photonic cluster states. We use polarization tomography on four sequentially detected photons to demonstrate and to directly quantify the robustness of the cluster's entanglement and the determinism in its photon generation.

2.
Phys Rev Lett ; 131(13): 133601, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37831993

RESUMO

Berry curvature is a fundamental element to characterize topological quantum physics, while a full measurement of Berry curvature in momentum space was not reported for topological states. Here we achieve two-dimensional Berry curvature reconstruction in a photonic quantum anomalous Hall system via Hall transport measurement of a momentum-resolved wave packet. Integrating measured Berry curvature over the two-dimensional Brillouin zone, we obtain Chern numbers corresponding to -1 and 0. Further, we identify bulk-boundary correspondence by measuring topology-linked chiral edge states at the boundary. The full topological characterization of photonic Chern bands from Berry curvature, Chern number, and edge transport measurements enables our photonic system to serve as a versatile platform for further in-depth study of novel topological physics.

3.
Phys Rev Lett ; 127(3): 030402, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328769

RESUMO

We propose a new method to directly measure a general multiparticle quantum wave function, a single matrix element in a multi-particle density matrix, by quantum teleportation. The density matrix element is embedded in a virtual logical qubit and is nondestructively teleported to a single physical qubit for readout. We experimentally implement this method to directly measure the wave function of a photonic mixed quantum state beyond a single photon using a single observable for the first time. Our method also provides an exponential advantage over the standard quantum state tomography in measurement complexity to fully characterize a sparse multiparticle quantum state.

4.
Nature ; 518(7540): 516-9, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719668

RESUMO

Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

5.
Phys Rev Lett ; 120(26): 260502, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004724

RESUMO

Full control of multiple degrees of freedom of multiple particles represents a fundamental ability for quantum information processing. We experimentally demonstrate an 18-qubit Greenberger-Horne-Zeilinger entanglement by simultaneous exploiting three different degrees of freedom of six photons, including their paths, polarization, and orbital angular momentum. We develop high-stability interferometers for reversible quantum logic operations between the photons' different degrees of freedom with precision and efficiencies close to unity, enabling simultaneous readout of 2^{18}=262 144 outcome combinations of the 18-qubit state. A state fidelity of 0.708±0.016 is measured, confirming the genuine entanglement of all 18 qubits.

6.
Phys Rev Lett ; 121(25): 250505, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608840

RESUMO

Entangled-photon sources with simultaneously near-unity heralding efficiency and indistinguishability are the fundamental elements for scalable photonic quantum technologies. We design and realize a degenerate telecommunication wavelength entangled-photon source from an ultrafast pulsed laser pumped spontaneous parametric down-conversion (SPDC), which shows simultaneously 97% heralding efficiency and 96% indistinguishability between independent single photons without narrow-band filtering. Such a beamlike and frequency-uncorrelated SPDC source allows generation of the first 12-photon genuine entanglement with a state fidelity of 0.572±0.024. We further demonstrate a blueprint of scalable scattershot boson sampling using 12 SPDC sources and a 12×12 mode interferometer for three-, four-, and five-boson sampling, which yields count rates more than 4 orders of magnitude higher than all previous SPDC experiments.

7.
Phys Rev Lett ; 119(8): 080502, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952770

RESUMO

Quantum Fourier transforms (QFTs) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here, we present and demonstrate a general technique that simplifies the construction of QFT interferometers using both path and polarization modes. On that basis, we first observe the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly exploit number-path entanglement generated in these QFT interferometers and demonstrate optical phase supersensitivities deterministically.

8.
Phys Rev Lett ; 119(5): 050503, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949702

RESUMO

To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

9.
Phys Rev Lett ; 116(7): 070502, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943520

RESUMO

The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

10.
Nat Photonics ; 17(4): 324-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064524

RESUMO

Entanglement between particles is a basic concept of quantum sciences. The ability to produce entangled particles in a controllable manner is essential for any quantum technology. Entanglement between light particles (photons) is particularly crucial for quantum communication due to light's non-interactive nature and long-lasting coherence. Resources producing entangled multiphoton cluster states will enable communication between remote quantum nodes, as the inbuilt redundancy of cluster photons allows for repeated local measurements-compensating for losses and probabilistic Bell measurements. For feasible applications, the cluster generation should be fast, deterministic and, most importantly, its photons indistinguishable, which will allow measurements and fusion of clusters by interfering photons. Here, using periodic excitation of a semiconductor quantum-dot-confined spin, we demonstrate a multi-indistinguishable photon cluster, featuring a continuously generated string of photons at deterministic gigahertz generation rates, and an optimized entanglement length of about ten photons. The indistinguishability of the photons opens up new possibilities for scaling up the cluster's dimensionality by fusion, thus building graph states suited for measurement-based photonic quantum computers and all-photonic quantum repeaters.

11.
Sci Rep ; 6: 26798, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245573

RESUMO

The indeterminacy of quantum mechanics was originally presented by Heisenberg through the tradeoff between the measuring error of the observable A and the consequential disturbance to the value of another observable B. This tradeoff now has become a popular interpretation of the uncertainty principle. However, the historic idea has never been exactly formulated previously and is recently called into question. A theory built upon operational and state-relevant definitions of error and disturbance is called for to rigorously reexamine the relationship. Here by putting forward such natural definitions, we demonstrate both theoretically and experimentally that there is no tradeoff if the outcome of measuring B is more uncertain than that of A. Otherwise, the tradeoff will be switched on and well characterized by the Jensen-Shannon divergence. Our results reveal the hidden effect of the uncertain nature possessed by the measured state, and conclude that the state-relevant relation between error and disturbance is not almosteverywhere a tradeoff as people usually believe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA