RESUMO
RATIONALE: The aroma profile of food is a complex mixture of volatile compounds that constitutes a major component of the overall eating experience. The food service industry and chefs therefore constantly seek ways to investigate and thereby enhance the aroma profile. Oven cooking, sous vide and pan fry are three cooking methods of beef commonly practised by chefs. Near real-time analysis of volatile compounds from these three cooking methods will provide insight into respective volatile fingerprints and help improve cooking techniques. METHODS: Volatile compounds from three beef cooking methods were captured using an in-house sol-gel based solid phase microextraction (SPME) method and analysed using direct analysis in real-time mass spectrometry (DART-MS). A volatile organic compound (VOC) standard was used to demonstrate successful implementation of the sol-gel coating technique. Volatile features discriminating the three cooking methods were shortlisted and statistically assessed by univariate and multivariate analyses. RESULTS: The VOC standard was successfully adsorbed by the sol-gel method and detected by DART-MS. Hierarchical cluster analysis clearly demarcated three beef cooking methods based on their volatile fingerprints. Out of 65 significant features differentiating the cooking methods, 50 were at highest concentrations from pan-fry cooking only, followed by 14 with highest concentrations from oven cooking followed by pan frying. Sous vide followed by pan frying showed lowest concentrations of almost all volatile features. CONCLUSIONS: The sol-gel-based solid-phase microextraction technique combined with DART-MS was successful in differentiating beef cooking methods based on their volatile fingerprints. A workflow for rapid assessment of the volatile profile from beef cooking methods was established, providing a baseline to further explore volatile profiles from other key ingredients.
Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Animais , Bovinos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/química , Espectrometria de Massas/métodos , CulináriaRESUMO
Forage seeds are a highly traded agricultural commodity, and therefore, quality control and assurance is high priority. In this study, we have used direct analysis in real time-mass spectrometry (DART-MS) as a tool to discriminate forage seeds based on their non-targeted chemical profiles. In the first experiment, two lots of perennial ryegrass (Lolium perenne L.) seed were discriminated based on exogenous residues of N-(3, 4-dichlorophenyl)-N,N-dimethylurea (Diuron(TM)), a herbicide. In a separate experiment, washed and unwashed seeds of the forage legumes white clover (Trifolium repens L.) and alfalfa (Medicago sativa L.) were discriminated based on the presence or absence of oxylipins, a class of endogenous antimicrobial compounds. Unwashed seeds confer toxicity towards symbiotic, nitrogen-fixing rhizobia which are routinely coated on legume seeds before planting, resulting in reduced rhizobial count. This is the first report of automatic introduction of intact seeds in the DART ion source and detecting oxylipins using DART-MS. Apart from providing scope to investigate legume-rhizobia symbiosis further in the context of oxylipins, the results presented here will enable future studies aimed at classification of seeds based on chemicals bound to the seed coat, thereby offering an efficient screening device for industry.
Assuntos
Lolium/química , Espectrometria de Massas/métodos , Medicago sativa/química , Sementes/química , Trifolium/química , Diurona/análise , Herbicidas/análise , Oxilipinas/análiseRESUMO
Relationships between overall liking scores for cooked lamb from Chinese (n = 158) and New Zealand (n = 156) consumers, and metabolite and lipid profiles were evaluated. Consumers assessed meat from 6 to 8-month-old lambs of composite genetics fed chicory (CHIC) or grass (GRASS), and from 12 month-old Merino lambs fed a mixed pasture (PMER). On average, Chinese consumers rated the overall liking of all types of lamb similarly, while New Zealand consumers preferred meat from CHIC over PMER. However, three clusters with similar preferences were obtained for both Chinese and New Zealand consumers based on their overall liking scores. In Cluster-1 with a preference for GRASS, overall liking for Chinese and NZ consumers was positively associated with umami compounds, ortho- and pyrophosphates (related to water holding capacity of meat), triglycerides (TG) with<50 carbons (C50) and phospholipids with polyunsaturated fatty acids (PUFA); but negatively associated with amino acids and TG with > C50 with saturated (SFA) and monounsaturated (MUFA) fatty acids. In Cluster-2 with a preference for CHIC, overall liking for both types of consumers was positively associated with TG with > C50 with PUFA, and phospholipids with PUFA, but negatively associated with umami compounds, ortho- and pyrophosphates and L-anserine. In Cluster-3 with a preference for PMER, overall liking for Chinese and NZ consumers was positively associated with amino acids, ortho- and pyrophosphates, L-anserine, umami compounds, TG with > C50 with SFA and MUFA and phospholipids that contain C16:0, C16:1, C18:0 and C18:1; but negatively associated with phospholipids with PUFA and TG with < C50 that contain PUFA. Overall, the liking of lamb meat between Chinese and New Zealand consumers differed, but similar clusters were generated based on their overall liking scores. The clusters were characterized by different associations of the consumer overall liking scores with cooked meat metabolome and lipidome profiles.
Assuntos
Lipidômica , Carne Vermelha , Aminoácidos , Animais , Anserina , China , Difosfatos , Ácidos Graxos , Ácidos Graxos Insaturados , Nova Zelândia , Poaceae , Carne Vermelha/análise , Carneiro DomésticoRESUMO
Perennial ryegrass (Lolium perenne) is integral to temperate pastoral agriculture, which contributes most of the milk and meat production worldwide. Chemical profiles and diversity of ryegrass offer several opportunities to harness specific traits and elucidate underlying biological mechanisms for forage improvement. We conducted a large-scale metabolomics study of perennial ryegrass comprising 715 genotypes, representing 118 populations from 21 countries. Liquid/gas chromatography-mass spectrometry based targeted and non-targeted techniques were used to analyse fructan oligosaccharides, lipids, fatty acid methyl esters, polar and semi-polar compounds. Fructan diversity across all genotypes was evaluated, high- and low-sugar groups identified, and fructan accumulation mechanisms explored. Metabolites differentiating the two groups were characterised, modules and pathways they represent deduced, and finally, visualisation and interpretation provided in a biological context. We also demonstrate a workflow for large-scale metabolomics studies from raw data through to statistical and pathway analysis. Raw files and metadata are available at the MetaboLights database.
Assuntos
Lolium/química , Metabolômica , Compostos Fitoquímicos/química , Lolium/metabolismo , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Compostos Fitoquímicos/metabolismoRESUMO
Holistic benefits of human milk to infants, particularly brain development and cognitive behavior, have stipulated that infant formula be tailored in composition like human milk. However, the composition of human milk, especially lipids, and their effects on brain development is complex and not fully elucidated. We evaluated brain lipidome profiles in weanling rats fed human milk or infant formula using non-targeted UHPLC-MS techniques. We also compared the lipid composition of human milk and infant formula using conventional GC-FID and HPLC-ELSD techniques. The sphingomyelin class of lipids was significantly higher in brains of rats fed human milk. Lipid species mainly comprising saturated or mono-unsaturated C18 fatty acids contributed significantly higher percentages to their respective classes in human milk compared to infant formula fed samples. In contrast, PUFAs contributed significantly higher percentages in brains of formula fed samples. Differences between human milk and formula lipids included minor fatty acids such as C8:0 and C12:0, which were higher in formula, and C16:1 and C18:1 n11, which were higher in human milk. Formula also contained higher levels of low- to medium-carbon triacylglycerols, whereas human milk had higher levels of high-carbon triacylglycerols. All phospholipid classes, and ceramides, were higher in formula. We show that brain lipid composition differs in weanling rats fed human milk or infant formula, but dietary lipid compositions do not necessarily manifest in the brain lipidome.
RESUMO
Wagyu beef products are marketed as luxury goods to discerning consumers and the lipid content and composition are important drivers of wagyu product value. Wagyu beef is an extensively marbled meat product, well characterised for its tenderness and flavour. In New Zealand, pasture-fed Wagyu-dairy beef production is increasing to meet demand for ultra-premium meat products. Important for these characteristics is the composition of lipid species and their distribution across the carcass. The aim of this study was to analyse the distribution of fatty acids and phospholipids in 26 table cuts, nine co-products and three fat deposits of carcasses from New Zealand pasture-fed Wagyu-dairy cross beef carcasses (nâ¯=â¯5). Phospholipid and fatty acid levels varied across different cuts of the carcass, but typically cuts with high levels of phospholipids also had high levels of omega-3 fatty acids and low levels of saturated fatty acids. This work will be used in the future to examine the potential health aspects of pasture-fed Wagyu beef.
Assuntos
Ácidos Graxos/análise , Fosfolipídeos/análise , Carne Vermelha/análise , Tecido Adiposo/química , Animais , Bovinos , Dieta/veterinária , Nova ZelândiaRESUMO
Meat colour is one of the cues available to the consumer to gauge overall meat quality and wholesomeness. Colour stability of meat is determined by several factors both inherent to the animal and post-slaughter conditions, including ageing, storage/packaging and display times. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study was undertaken to identify and compare polar metabolites between ovine meat samples that were exposed to different durations of ageing, storage conditions, and display times. Primary metabolites comprising amino acids, sugars, nucleotides, nucleosides, organic acids and their breakdown products were mainly identified as discriminating factors. For the first time, boron complexes of sugar and malic acid were also tentatively identified. As expected, most compounds identified were related to myoglobin chemistry, and compounds with antioxidant properties were found in higher levels in colour stable samples. Supplementary studies identifying semi-polar, non-polar and volatile compounds will provide a holistic understanding of the chemical basis of colour stability in ovine meat.