Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Network ; 34(4): 250-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534974

RESUMO

The rapid advancement of technology such as stream processing technologies, deep-learning approaches, and artificial intelligence plays a prominent and vital role, to detect heart rate using a prediction model. However, the existing methods could not handle high -dimensional datasets, and deep feature learning to improvise the performance. Therefore, this work proposed a real-time heart rate prediction model, using K-nearest neighbour (KNN) adhered to the principle component analysis algorithm (PCA) and weighted random forest algorithm for feature fusion (KPCA-WRF) approach and deep CNN feature learning framework. The feature selection, from the fused features, was optimized by ant colony optimization (ACO) and particle swarm optimization (PSO) algorithm to enhance the selected fused features from deep CNN. The optimized features were reduced to low dimensions using the PCA algorithm. The significant straight heart rate features are plotted by capturing out nearest similar data point values using the algorithm. The fused features were then classified for aiding the training process. The weighted values are assigned to those tuned hyper parameters (feature matrix forms). The optimal path and continuity of the weighted feature representations are moved using the random forest algorithm, in K-fold validation iterations.


Assuntos
Inteligência Artificial , Máquina de Vetores de Suporte , Frequência Cardíaca , Algoritmos , Aprendizado de Máquina
2.
Eng Appl Artif Intell ; 116: 105398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36158870

RESUMO

Background: Recently, the coronavirus disease 2019 (COVID-19) has caused mortality of many people globally. Thus, there existed a need to detect this disease to prevent its further spread. Hence, the study aims to predict COVID-19 infected patients based on deep learning (DL) and image processing. Objectives: The study intends to classify the normal and abnormal cases of COVID-19 by considering three different medical imaging modalities namely ultrasound imaging, X-ray images and CT scan images through introduced attention bottleneck residual network (AB-ResNet). It also aims to segment the abnormal infected area from normal images for localizing localising the disease infected area through the proposed edge based graph cut segmentation (E-GCS). Methodology: AB-ResNet is used for classifying images whereas E-GCS segment the abnormal images. The study possess various advantages as it rely on DL and possess capability for accelerating the training speed of deep networks. It also enhance the network depth leading to minimum parameters, minimising the impact of vanishing gradient issue and attaining effective network performance with respect to better accuracy. Results/Conclusion: Performance and comparative analysis is undertaken to evaluate the efficiency of the introduced system and results explores the efficiency of the proposed system in COVID-19 detection with high accuracy (99%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA