Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450631

RESUMO

Crosstalk between opioid and adrenergic receptors is well characterized and due to interactions between second messenger systems, formation of receptor heterodimers, and extracellular allosteric binding regions. Both classes of receptors bind both sets of ligands. We propose here that receptor crosstalk may be mirrored in ligand complementarity. We demonstrate that opioids bind to adrenergic compounds with micromolar affinities. Additionally, adrenergic compounds bind with micromolar affinities to extracellular loops of opioid receptors while opioids bind to extracellular loops of adrenergic receptors. Thus, each compound type can bind to the complementary receptor, enhancing the activity of the other compound type through an allosteric mechanism. Screening for ligand complementarity may permit the identification of other mutually-enhancing sets of compounds as well as the design of novel combination drugs or tethered compounds with improved duration and specificity of action.


Assuntos
Agonistas Adrenérgicos/química , Analgésicos Opioides/química , Desenvolvimento de Medicamentos , Receptores Adrenérgicos/química , Receptores Opioides/química , Agonistas Adrenérgicos/farmacologia , Analgésicos Opioides/farmacologia , Desenvolvimento de Medicamentos/métodos , Humanos , Cinética , Ligantes , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores Opioides/agonistas , Relação Estrutura-Atividade
2.
Int J Mol Sci ; 19(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342106

RESUMO

Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.


Assuntos
Agonistas Adrenérgicos/metabolismo , Encefalina Metionina/metabolismo , Morfina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptores Opioides mu/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Agonistas Adrenérgicos/química , Sequência de Aminoácidos , Animais , Encefalina Metionina/química , Histamina/química , Histamina/metabolismo , Humanos , Metionina/química , Metionina/metabolismo , Camundongos , Morfina/química , Ligação Proteica , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Opioides mu/química , Espectrofotometria Ultravioleta
3.
Sci Rep ; 9(1): 10379, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316088

RESUMO

Protein stability in detergent or membrane-like environments is the bottleneck for structural studies on integral membrane proteins (IMP). Irrespective of the method to study the structure of an IMP, detergent solubilization from the membrane is usually the first step in the workflow. Here, we establish a simple, high-throughput screening method to identify optimal detergent conditions for membrane protein stabilization. We apply differential scanning fluorimetry in combination with scattering upon thermal denaturation to study the unfolding of integral membrane proteins. Nine different prokaryotic and eukaryotic membrane proteins were used as test cases to benchmark our detergent screening method. Our results show that it is possible to measure the stability and solubility of IMPs by diluting them from their initial solubilization condition into different detergents. We were able to identify groups of detergents with characteristic stabilization and destabilization effects for selected targets. We further show that fos-choline and PEG family detergents may lead to membrane protein destabilization and unfolding. Finally, we determined thenmodynamic parameters that are important indicators of IMP stability. The described protocol allows the identification of conditions that are suitable for downstream handling of membrane proteins during purification.


Assuntos
Detergentes/análise , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/isolamento & purificação , Detergentes/química , Fluorometria , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estabilidade Proteica , Solubilidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA