Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2306358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822151

RESUMO

Hybrid organic-inorganic bio-inspired apatite nanoparticles (NPs) are attractive for biomedical applications and especially in nanomedicine. Unfortunately, their applications in nanomedicine are limited by their broad particle size distributions and uncontrolled drug loading due to their multistep synthesis process.  Besides, very few attempts at exposing bioactive peptides on apatite NPs are made. In this work, an original one-pot synthesis of well-defined bioactive hybrid NPs composed of a mineral core of bioinspired apatite surrounded by an organic corona of bioactive peptides is reported. Dual stabilizing-bioactive agents, phosphonated polyethylene glycol-peptide conjugates, are prepared and directly used during apatite precipitation i) to form the organic corona during apatite precipitation, driving the size and shape of resulting hybrid NPs with colloidal stabilization and ii) to expose peptide moieties (RGD or YIGSR sequences) at the NPs periphery in view of conferring additional surface properties to enhance their interaction with cells. Here, the success of this approach is demonstrated, the functionalized NPs are fully characterized by Fourier-transform infrared, Raman, X-ray diffraction, solid and liquid state NMR, transmission electron microscopy, and dynamic light scattering, and their interaction with fibroblast cells is followed, unveiling a synergistic proliferative effect.


Assuntos
Nanomedicina , Nanopartículas , Apatitas/química , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Electrophoresis ; 45(5-6): 557-572, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161236

RESUMO

We explore a bioinspired approach to design tailored functionalized capillary electrophoresis (CE) surfaces based on covalent grafting for biomolecules analysis. First, the approach aims to overcome well-known common obstacles in CE protein analysis affecting considerably the CE performance (asymmetry, resolution, and repeatability) such as the unspecific adsorption on fused silica surface and the lack of control of electroosmotic flow (EOF). Then, our approach, which relies on new amino-amide mimic hybrid precursors synthesized by silylation of amino-amides (Si-AA) derivatives with 3-isocyanatopropyltriethoxysilane, aims to recapitulate the diversity of protein-protein interactions (π-π stacking, ionic, Van der Waals…) found in physiological condition (bioinspired approach) to improve the performance of CE protein analysis (electrochromatography). As a proof of concept, these silylated Si-AA (tyrosinamide silylation, serinamide silylation, argininamide silylation, leucinamide silylation, and isoglutamine silylation acid) have been covalently grafted in physiological conditions in different amount on bare fused silica capillary giving rise to a biomimetic coating and allowing both the modulation of EOF and protein-surface interactions. The analytical performances of amino-amide functionalized capillaries were assessed using lysozyme, cytochrome C and ribonuclease A and compared to traditional capillary coatings poly(ethylene oxide), poly(diallyldimethylammonium chloride), and sodium poly(styrenesulfonate). EOF, protein adsorption rate, protein retention factor k, and selectivity were determined for each coating. All results obtained showed this approach allowed to modulate the EOF, reduce unspecific adsorption, and generate specific interactions with proteins by varying the nature and the amount of Si-AA in the functionalization mixture.


Assuntos
Amidas , Eletro-Osmose , Eletroforese Capilar/métodos , Polietilenoglicóis/química , Proteínas , Dióxido de Silício/química
3.
Nanotechnology ; 34(48)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647881

RESUMO

The design of a biomimetic scaffold is a major challenge in tissue engineering to promote tissue reconstruction. The use of synthetic polymer nanofibers is widely described as they provide biocompatible matrices whose topography mimics natural extracellular matrix (ECM). To closely match the biochemical composition of the ECM, bioactive molecules such as gelatin are added to the nanofibers to enhance cell adhesion and proliferation. To overcome the rapid solubilization of gelatin in biological fluids and to allow a lasting biological effect, the covalent crosslinking of this macromolecule in the network is crucial. The sol-gel route offers the possibility of gentle crosslinking during shaping but is rarely combined with electrospinning. In this study, we present the creation of Poly(lactic acid)/Gelatin hybrid nanofibers by sol-gel route during electrospinning. To enable sol-gel crosslinking, we synthesized star-shaped PLA and functionalized it with silane groups; then we functionalized gelatin with the same groups for their subsequent reaction with the polymer and thus the creation of the hybrid nanonetwork. We evaluated the impact of the presence of gelatin in Poly(lactic acid)/Gelatin hybrid nanofibers at different percentages on the mechanical properties, nanonetwork crosslinking, degradation and biological properties of the hybrid nanofibers. The addition of gelatin modulated nanonetwork crosslinking that impacted the stiffness of the nanofibers, resulting in softer materials for the cells. Moreover, these hybrid nanofibers also showed a significant improvement in fibroblast proliferation and present a degradation rate suitable for tissue reconstruction. Finally, the bioactive hybrid nanofibers possess versatile properties, interesting for various potential applications in tissue reconstruction.


Assuntos
Gelatina , Nanofibras , Poliésteres , Polímeros
4.
Bioorg Chem ; 115: 105218, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365058

RESUMO

The diverse signaling pathways engaged by serotonin type 6 receptor (5-HT6R) together with its high constitutive activity suggests different types of pharmacological interventions for the treatment of CNS disorders. Non-physiological activation of mTOR kinase by constitutively active 5-HT6R under neuropathic pain conditions focused our attention on the possible repurposing of 5-HT6R inverse agonists as a strategy to treat painful symptoms associated with neuropathies of different etiologies. Herein, we report the identification of compound 33 derived from the library of 2-aryl-1H-pyrrole-3-carboxamides as a potential analgesic agent. Compound 33 behaves as a potent 5-HT6R inverse agonist at Gs, Cdk5, and mTOR signaling. Preliminary ADME/Tox studies revealed preferential distribution of 33 to the CNS and placed it in the low-risk safety space. Finally, compound 33 dose-dependently reduced tactile allodynia in spinal nerve ligation (SNL)-induced neuropathic rats.


Assuntos
Neuralgia/tratamento farmacológico , Pirróis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Estrutura Molecular , Pirróis/química , Pirróis/metabolismo , Ratos , Ratos Wistar , Antagonistas da Serotonina/química , Antagonistas da Serotonina/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641630

RESUMO

Ordered mesoporous materials and their modification with multiple functional groups are of wide scientific interest for many applications involving interaction with biological systems and biomolecules (e.g., catalysis, separation, sensor design, nano-science or drug delivery). In particular, the immobilization of enzymes onto solid supports is highly attractive for industry and synthetic chemistry, as it allows the development of stable and cheap biocatalysts. In this context, we developed novel silylated amino acid derivatives (Si-AA-NH2) that have been immobilized onto SBA-15 materials in biocompatible conditions avoiding the use of toxic catalyst, solvents or reagents. The resulting amino acid-functionalized materials (SBA-15@AA) were characterized by XRD, TGA, EA, Zeta potential, nitrogen sorption and FT-IR. Differences of the physical properties (e.g., charges) were observed while the structural ones remained unchanged. The adsorption of the enzyme lysozyme (Lyz) onto the resulting functionalized SBA-15@AA materials was evaluated at different pHs. The presence of different functional groups compared with bare SBA-15 showed better adsorption results, for example, 79.6 nmol of Lyz adsorbed per m2 of SBA-15@Tyr compared with the 44.9 nmol/m2 of the bare SBA-15.


Assuntos
Aminoácidos/química , Muramidase/química , Dióxido de Silício/química , Adsorção , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
6.
Chemistry ; 26(56): 12839-12845, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516440

RESUMO

A simple and efficient way to synthesize peptide-containing silicone materials is described. Silicone oils containing a chosen ratio of bioactive peptide sequences were prepared by acid-catalyzed copolymerization of dichlorodimethylsilane, hybrid dichloromethyl peptidosilane, and Si(vinyl)- or SiH-functionalized monomers. Functionalized silicone oils were first obtained and then, after hydrosilylation cross-linking, bioactive polydimethylsiloxane (PDMS)-based materials were straightforwardly obtained. The introduction of an antibacterial peptide yielded PDMS materials showing activity against Staphylococcus aureus. PDMS containing RGD ligands showed improved cell-adhesion properties. This generic method was fully compatible with the stability of peptides and thus opened the way to the synthesis of a wide range of biologically active silicones.


Assuntos
Dimetilpolisiloxanos , Adesão Celular , Peptídeos , Polimerização , Óleos de Silicone
7.
Crit Care ; 24(1): 79, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138763

RESUMO

In the publication of this article [1], there was an error in the Family Name of one of the authors. This has now been updated in the original article.

8.
Crit Care ; 24(1): 34, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014005

RESUMO

BACKGROUND: Muscle weakness following critical illness is the consequence of loss of muscle mass and alteration of muscle quality. It is associated with long-term disability. Ultrasonography is a reliable tool to quantify muscle mass, but studies that evaluate muscle quality at the critically ill bedside are lacking. Shear wave ultrasound elastography (SWE) provides spatial representation of soft tissue stiffness and measures of muscle quality. The reliability and reproducibility of SWE in critically ill patients has never been evaluated. METHODS: Two operators tested in healthy controls and in critically ill patients the intra- and inter-operator reliability of the SWE using transversal and longitudinal views of the diaphragm and limb muscles. Reliability was calculated using the intra-class correlation coefficient and a bootstrap sampling method assessed their consistency. RESULTS: We collected 560 images. Longitudinal views of the diaphragm (ICC 0.83 [0.50-0.94]), the biceps brachii (ICC 0.88 [0.67-0.96]) and the rectus femoris (ICC 0.76 [0.34-0.91]) were the most reliable views in a training set of healthy controls. Intra-class correlation coefficient for inter-operator reproducibility and intra-operator reliability was above 0.9 for all muscles in a validation set of healthy controls. In critically ill patients, inter-operator reproducibility and intra-operator 1 and 2 reliability ICCs were respectively 0.92 [0.71-0.98], 0.93 [0.82-0.98] and 0.92 [0.81-0.98] for the diaphragm; 0.96 [0.86-0.99], 0.98 [0.94-0.99] and 0.99 [0.96-1] for the biceps brachii and 0.91 [0.51-0.98], 0.97 [0.93-0.99] and 0.99 [0.97-1] for the rectus femoris. The probability to reach intra-class correlation coefficient greater than 0.8 in a 10,000 bootstrap sampling for inter-operator reproducibility was respectively 81%, 84% and 78% for the diaphragm, the biceps brachii and the rectus femoris respectively. CONCLUSIONS: SWE is a reliable technique to evaluate limb muscles and the diaphragm in both healthy controls and in critically ill patients. TRIAL REGISTRATION: The study was registered (ClinicalTrial NCT03550222).


Assuntos
Diafragma/fisiopatologia , Técnicas de Imagem por Elasticidade/instrumentação , Extremidades/fisiopatologia , Músculos/anormalidades , Ultrassonografia/instrumentação , Ultrassonografia/normas , Adulto , Estado Terminal , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/tendências , Feminino , França , Hospitais Universitários/organização & administração , Hospitais Universitários/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/fisiopatologia , Escores de Disfunção Orgânica , Estudos Prospectivos , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Ultrassonografia/métodos
9.
Chem Soc Rev ; 48(15): 4049-4086, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31271159

RESUMO

3D printing has triggered the acceleration of numerous research areas in health sciences, which traditionally used cells as starting materials, in particular tissue engineering, regenerative medicine and also in the design of more relevant bioassays for drug discovery and development. While cells can be successfully printed in 2D layers without the help of any supporting biomaterial, the obtainment of more complex 3D architectures requires a specific bioink, i.e. a material in which the cells are embedded during and after the printing process helping to support them while they are arranged in superimposed layers. The bioink plays a critical role in bioprinting: first, it must be adapted to the 3D printing technology; then, it must fulfil the physicochemical and mechanical characteristics of the target construct (e.g. stiffness, elasticity, robustness, transparency); finally it should guarantee cell viability and eventually induce a desired behaviour. This review focuses on the nature of bioink components of natural or synthetic origin, and highlights the chemistry required for the establishment of the 3D network in conditions compatible with the selected 3D printing technique and cell survival.


Assuntos
Bioimpressão , Impressão Tridimensional , Animais , Sobrevivência Celular , Descoberta de Drogas , Humanos
10.
Macromol Rapid Commun ; 39(3)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29094415

RESUMO

Advanced drug delivery systems (DDS) are easily designed following a photoiterative strategy. Multifunctional polymers are obtained by coupling building blocks of interest to an alkynated poly(ε-caprolactone) (PCL) platform via an efficient thiol-yne photoaddition. Fine-tuning over the design is achieved, as illustrated with targeting and enzyme-responsive DDS.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Processos Fotoquímicos , Poliésteres/química , Polietilenoglicóis/química , Alcinos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Curcumina/química , Células HEK293 , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Compostos de Sulfidrila/química
11.
Mol Ther ; 25(2): 534-546, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153100

RESUMO

Melanoma is a highly metastatic and deadly form of cancer. Invasive melanoma cells overexpress integrin αvß3, which is a well-known target for Arg-Gly-Asp-based (RGD) peptides. We developed a sophisticated method to synthetize milligram amounts of a targeted vector that allows the RGD-mediated targeting, internalization, and release of a mitochondria-disruptive peptide derived from the pro-apoptotic Bax protein. We found that 2.5 µM Bax[109-127] was sufficient to destabilize the mitochondria in ten different tumor cell lines, even in the presence of the anti-apoptotic Bcl2 protein, which is often involved in tumor resistance. This pore-forming peptide displayed antitumor activity when it was covalently linked by a disulfide bridge to the tetrameric RAFT-c[RGD]4-platform and after intravenous injection in a human melanoma tumor model established in humanized immuno-competent mice. In addition to its direct toxic effect, treatment with this combination induced the release of the immuno-stimulating factor monocyte chimoattractant protein 1 (MCP1) in the blood and a decrease in the level of the pro-angiogenic factor FGF2. Our novel multifunctional, apoptosis-inducing agent could be further customized and assayed for potential use in tumor-targeted therapy.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Fragmentos de Peptídeos/farmacologia , Proteína X Associada a bcl-2/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Melanoma/tratamento farmacológico , Camundongos , Camundongos Knockout , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/síntese química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Chembiochem ; 18(21): 2110-2114, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28863239

RESUMO

Different intracellular delivery systems of bioactive compounds have been developed, including cell-penetrating peptides. Although usually nontoxic and biocompatible, these vectors share some of the general drawbacks of peptides, notably low bioavailability and susceptibility to protease degradation, that limit their use. Herein, the conversion of short peptide sequences into poly-α-amino-γ-lactam foldamers that adopt a ribbon-like structure is investigated. This template is used to distribute critical cationic and/or hydrophobic groups on both sides of the backbone, leading to potent short, cell-permeable foldamers with a low positive-charge content. The lead compound showed dramatically improved protease resistance and was able to efficiently deliver a biologically relevant cargo inside cells. This study provided a simple strategy to convert short peptide sequences into efficient protease-resistant cell-penetrating foldamers.


Assuntos
Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Lactamas/farmacocinética , Polímeros/farmacocinética , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactamas/química , Estrutura Molecular , Polímeros/química
13.
Beilstein J Org Chem ; 13: 2087-2093, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-33613776

RESUMO

While presenting particularly interesting advantages, peptide synthesis by ball-milling was never compared to the two traditional strategies, namely peptide syntheses in solution and on solid support (solid-phase peptide synthesis, SPPS). In this study, the challenging VVIA tetrapeptide was synthesized by ball-milling, in solution, and on solid support. The three strategies were then compared in terms of yield, purity, reaction time and environmental impact. The results obtained enabled to draw some strengths and weaknesses of each strategy, and to foresee what will have to be implemented to build more efficient and sustainable peptide syntheses in the near future.

14.
J Pept Sci ; 22(3): 143-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785930

RESUMO

The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.


Assuntos
Amidas/química , Fragmentos de Peptídeos/química , Peptídeos Cíclicos/síntese química , Prótons , Serina/química , Acilação , Ácido Aspártico/química , Ácidos Carboxílicos/química , Fluorenos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
15.
Langmuir ; 31(43): 11868-74, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26440047

RESUMO

Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions.


Assuntos
Peptídeos/química , Engenharia de Proteínas , Silício/química , Adsorção , Sequência de Aminoácidos , Materiais Biocompatíveis , Microscopia de Fluorescência , Espectrometria de Fluorescência
16.
J Pept Sci ; 21(3): 243-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25688748

RESUMO

We have recently reported on a new class of silicone-peptide' biopolymers obtained by polymerization of di-functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane-derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone-bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side-chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating.


Assuntos
Aminoácidos/química , Antibacterianos/síntese química , Peptídeos/síntese química , Polímeros/síntese química , Siloxanas/química , Animais , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos/farmacologia , Polimerização , Polímeros/farmacologia , Silicones/química , Técnicas de Síntese em Fase Sólida/métodos , Temperatura , Água/química
17.
Angew Chem Int Ed Engl ; 54(47): 13966-70, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26398631

RESUMO

The conformational control of molecular scaffolds allows the display of functional groups in defined spatial arrangement. This is of considerable interest for developing fundamental and applied systems in both the fields of biology and material sciences. Peptides afford a large diversity of functional groups, and peptide synthetic routes are very attractive and accessible. However, most short peptides do not possess well-defined secondary structures. Herein, we developed a simple strategy for converting peptide sequences into structured γ-lactam-containing oligomers while keeping the amino acids side chain diversity. We showed the propensity of these molecules to adopt ribbon-like secondary structures. The periodic distribution of the functional groups on both sides of the ribbon plane is encoded by the initial peptide sequence.


Assuntos
Peptídeos/química , Dobramento de Proteína , Ciclização , Lactamas/química , Estrutura Secundária de Proteína , Análise de Sequência de Proteína
18.
Angew Chem Int Ed Engl ; 54(12): 3778-82, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25650781

RESUMO

We describe a new class of silicone-containing peptide polymers obtained by a straightforward polymerization in water using tailored chlorodimethylsilyl peptide blocks as monomeric units. This general strategy is applicable to any type of peptide sequences, yielding linear or branched polymer chains composed of well-defined peptide sequences.


Assuntos
Biopolímeros/química , Peptídeos/química , Silicones/química , Sequência de Aminoácidos , Biopolímeros/metabolismo , Colecistocinina/química , Colecistocinina/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Silanos/síntese química , Silanos/química , Água/química
19.
Analyst ; 139(15): 3748-54, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24910856

RESUMO

We report applications of new hybrid organic-inorganic silica based materials as laser desorption/ionization (LDI)-promoting surfaces for high-throughput identification of peptides. The driving force of our work was to design a new material composed of a conventional MALDI matrix covalently attached to silica with a high organic/inorganic ratio in order to improve the UV absorption by such LDI hybrid matrices. Amorphous CHCA-functionalized silica presenting an organic content up to 1.3 mmol g(-1) (around 40% in weight from TGA and elementary analysis measurements) gave very interesting LDI performances in terms of detection sensitivity as well as relative ionization discrepancy (spectral suppression) through the analyses of small synthetic peptide mixtures (550-1300 Da) taking CHCA and amorphous silica as model matrices for control experiments.


Assuntos
Ácidos Cumáricos/química , Compostos de Organossilício/química , Peptídeos/química , Dióxido de Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Ácidos Cumáricos/síntese química , Compostos de Organossilício/síntese química , Dióxido de Silício/síntese química
20.
Angew Chem Int Ed Engl ; 53(21): 5389-93, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24757099

RESUMO

A mild, practical, and simple procedure for peptide-bond formation is reported. Instead of activation of the carboxylic acid functionality, the reaction involves an unprecedented use of activated α-aminoesters. The method provides a straightforward entry to dipeptides and was effective when a sensitive cysteine residue was used, as no epimerization was detected in this case. The applicability of this method to iterative peptide synthesis was illustrated by the synthesis of a model tetrapeptide in the challenging reverse N→C direction.


Assuntos
Oligopeptídeos/síntese química , Amidas/química , Aminoácidos/química , Ácidos Carboxílicos/química , Ésteres , Isomerismo , Oligopeptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA