Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Malar J ; 19(1): 391, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148255

RESUMO

BACKGROUND: Histidine-rich protein 2 (HRP2)-based malaria rapid diagnostic tests (RDTs) are effective and widely used for the detection of wild-type Plasmodium falciparum infections. Although recent studies have reported false negative HRP2 RDT results due to pfhrp2 and pfhrp3 gene deletions in different countries, there is a paucity of data on the deletions of these genes in Tanzania. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 in four regions: Geita, Kigoma, Mtwara and Ruvuma. All participants had microscopy and RDT performed in the field and provided a blood sample for laboratory multiplex antigen detection (for Plasmodium lactate dehydrogenase, aldolase, and P. falciparum HRP2). Samples showing RDT false negativity or aberrant relationship of HRP2 to pan-Plasmodium antigens were genotyped to detect the presence/absence of pfhrp2/3 genes. RESULTS: Of all samples screened by the multiplex antigen assay (n = 7543), 2417 (32.0%) were positive for any Plasmodium antigens while 5126 (68.0%) were negative for all antigens. The vast majority of the antigen positive samples contained HRP2 (2411, 99.8%), but 6 (0.2%) had only pLDH and/or aldolase without HRP2. Overall, 13 samples had an atypical relationship between a pan-Plasmodium antigen and HRP2, but were positive by PCR. An additional 16 samples with negative HRP2 RDT results but P. falciparum positive by microscopy were also chosen for pfhrp2/3 genotyping. The summation of false negative RDT results and laboratory antigen results provided 35 total samples with confirmed P. falciparum DNA for pfhrp2/3 genotyping. Of the 35 samples, 4 (11.4%) failed to consistently amplify positive control genes; pfmsp1 and pfmsp2 and were excluded from the analysis. The pfhrp2 and pfhrp3 genes were successfully amplified in the remaining 31 (88.6%) samples, confirming an absence of deletions in these genes. CONCLUSIONS: This study provides evidence that P. falciparum parasites in the study area have no deletions of both pfhrp2 and pfhrp3 genes. Although single gene deletions could have been missed by the multiplex antigen assay, the findings support the continued use of HRP2-based RDTs in Tanzania for routine malaria diagnosis. There is a need for the surveillance to monitor the status of pfhrp2 and/or pfhrp3 deletions in the future.


Assuntos
Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/estatística & dados numéricos , Deleção de Genes , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Prevalência , Tanzânia , Adulto Jovem
2.
Sci Rep ; 13(1): 2893, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36801925

RESUMO

The prevalence of Plasmodium falciparum hrp2 (pfhrp2)-deleted parasites threatens the efficacy of the most used and sensitive malaria rapid diagnostic tests and highlights the need for continued surveillance for this gene deletion. While PCR methods are adequate for determining pfhrp2 presence or absence, they offer a limited view of its genetic diversity. Here, we present a portable sequencing method using the MinION. Pfhrp2 amplicons were generated from individual samples, barcoded, and pooled for sequencing. To overcome potential crosstalk between barcodes, we implemented a coverage-based threshold for pfhrp2 deletion confirmation. Amino acid repeat types were then counted and visualized with custom Python scripts following de novo assembly. We evaluated this assay using well-characterized reference strains and 152 field isolates with and without pfhrp2 deletions, of which 38 were also sequenced on the PacBio platform to provide a standard for comparison. Of 152 field samples, 93 surpassed the positivity threshold, and of those samples, 62/93 had a dominant pfhrp2 repeat type. PacBio-sequenced samples with a dominant repeat-type profile from the MinION sequencing data matched the PacBio profile. This field-deployable assay can be used alone for surveilling pfhrp2 diversity or as a sequencing-based addition to the World Health Organization's existing deletion surveillance protocol.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Proteínas de Protozoários/genética , Malária Falciparum/epidemiologia , Análise Custo-Benefício , Testes Diagnósticos de Rotina/métodos , Deleção de Genes
3.
Am J Trop Med Hyg ; 105(4): 1067-1075, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491220

RESUMO

Routine assessment of the efficacy of artemisinin-based combination therapies (ACTs) is critical for the early detection of antimalarial resistance. We evaluated the efficacy of ACTs recommended for treatment of uncomplicated malaria in five sites in Democratic Republic of the Congo (DRC): artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), and dihydroartemisinin-piperaquine (DP). Children aged 6-59 months with confirmed Plasmodium falciparum malaria were treated with one of the three ACTs and monitored. The primary endpoints were uncorrected and polymerase chain reaction (PCR)-corrected 28-day (AL and ASAQ) or 42-day (DP) cumulative efficacy. Molecular markers of resistance were investigated. Across the sites, uncorrected efficacy estimates ranged from 63% to 88% for AL, 73% to 100% for ASAQ, and 56% to 91% for DP. PCR-corrected efficacy estimates ranged from 86% to 98% for AL, 91% to 100% for ASAQ, and 84% to 100% for DP. No pfk13 mutations previously found to be associated with ACT resistance were observed. Statistically significant associations were found between certain pfmdr1 and pfcrt genotypes and treatment outcome. There is evidence of efficacy below the 90% cutoff recommended by WHO to consider a change in first-line treatment recommendations of two ACTs in one site not far from a monitoring site in Angola that has shown similar reduced efficacy for AL. Confirmation of these findings in future therapeutic efficacy monitoring in DRC is warranted.


Assuntos
Amodiaquina/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Piperazinas/uso terapêutico , Quinolinas/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Pré-Escolar , Congo/epidemiologia , Combinação de Medicamentos , Resistência a Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Piperazinas/administração & dosagem , Plasmodium falciparum , Quinolinas/administração & dosagem
4.
PLoS One ; 15(7): e0236369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702040

RESUMO

Histidine-rich protein 2 (HRP2) detecting rapid diagnostic tests (RDTs) have played an important role in enabling prompt malaria diagnosis in remote locations. However, emergence of pfhrp2 deleted parasites is threatening the efficacy of RDTs, and the World Health Organization (WHO) has highlighted surveillance of these deletions as a priority. Nested PCR is used to confirm pfhrp2 deletion but is costly and laborious. Due to spurious amplification of paralogue pfhrp3, the identity of nested exon 1 PCR product must be confirmed by sequencing. Here we describe a new one-step PCR method for detection of pfhrp2. To determine sensitivity and specificity, all PCRs were performed in triplicate. Using photo-induced electron transfer (PET) PCR detecting 18srRNA as true positive, one-step had comparable sensitivity of 95.0% (88.7-98.4%) to nested exon 1, 99.0% (94.6-99.9%) and nested exon 2, 98.0% (93.0-99.8%), and comparable specificity 93.8% (69.8-99.8%) to nested exon 1 100.0% (79.4-100.0%) and nested exon 2, 100.0% (74.4-100.0%). Sequencing revealed that one step PCR does not amplify pfhrp3. Logistic regression models applied to measure the 95% level of detection of the one-step PCR in clinical isolates provided estimates of 133p/µL (95% confidence interval (CI): 3-793p/µL) for whole blood (WB) samples and 385p/µL (95% CI: 31-2133 p/µL) for dried blood spots (DBSs). When considering protocol attributes, the one-step PCR is less expensive, faster and more suitable for high throughput. In summary, we have developed a more accurate PCR method that may be ideal for the application of the WHO protocol for investigating pfhrp2 deletions in symptomatic individuals presenting to health care facilities.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/genética , Testes Diagnósticos de Rotina , Deleção de Genes , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA