Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cardiovasc Diabetol ; 22(1): 84, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046242

RESUMO

AIM: Obesity is linked to cardiometabolic diseases, however non-obese individuals are also at risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). White adipose tissue (WAT) is known to play a role in both T2D and CVD, but the contribution of WAT inflammatory status especially in non-obese patients with cardiometabolic diseases is less understood. Therefore, we aimed to find associations between WAT inflammatory status and cardiometabolic diseases in non-obese individuals. METHODS: In a population-based cohort containing non-obese healthy (n = 17), T2D (n = 16), CVD (n = 18), T2D + CVD (n = 19) individuals, seventeen different cytokines were measured in WAT and in circulation. In addition, 13-color flow cytometry profiling was employed to phenotype the immune cells. Human T cell line (Jurkat T cells) was stimulated by rCCL18, and conditioned media (CM) was added to the in vitro cultures of human adipocytes. Lipolysis was measured by glycerol release. Blocking antibodies against IFN-γ and TGF-ß were used in vitro to prove a role for these cytokines in CCL18-T-cell-adipocyte lipolysis regulation axis. RESULTS: In CVD, T2D and CVD + T2D groups, CCL18 and CD4+ T cells were upregulated significantly compared to healthy controls. WAT CCL18 secretion correlated with the amounts of WAT CD4+ T cells, which also highly expressed CCL18 receptors suggesting that WAT CD4+ T cells are responders to this chemokine. While direct addition of rCCL18 to mature adipocytes did not alter the adipocyte lipolysis, CM from CCL18-treated T cells increased glycerol release in in vitro cultures of adipocytes. IFN-γ and TGF-ß secretion was significantly induced in CM obtained from T cells treated with CCL18. Blocking these cytokines in CM, prevented CM-induced upregulation of adipocyte lipolysis. CONCLUSION: We suggest that in T2D and CVD, increased production of CCL18 recruits and activates CD4+ T cells to secrete IFN-γ and TGF-ß. This, in turn, promotes adipocyte lipolysis - a possible risk factor for cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Glicerol/metabolismo , Linfócitos T/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Quimiocinas CC/metabolismo
2.
Gut ; 71(11): 2179-2193, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598978

RESUMO

OBJECTIVE: Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN: Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS: While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION: Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Obesidade/metabolismo , Proteoma/metabolismo
3.
PLoS Pathog ; 13(4): e1006273, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28403220

RESUMO

Human cytomegalovirus (HCMV) is a widely distributed herpesvirus that causes significant morbidity in immunocompromised hosts. Inhibitors of viral DNA replication are available, but adverse effects limit their use. Alternative antiviral strategies may include inhibition of entry. We show that soluble derivatives of the platelet-derived growth factor receptor alpha (PDGFR-alpha), a putative receptor of HCMV, can inhibit HCMV infection of various cell types. A PDGFR-alpha-Fc fusion protein binds to and neutralizes cell-free virus particles at an EC50 of 10-30 ng/ml. Treatment of particles reduced both attachment to and fusion with cells. In line with the latter, PDGFR-alpha-Fc was also effective when applied postattachment. A peptide scan of the extracellular domain of PDGFR-alpha identified a 40mer peptide that inhibits infection at an EC50 of 1-2 nmol/ml. Both, peptide and fusion protein, were effective against various HCMV strains and are hence promising candidates for the development of novel anti-HCMV therapies.


Assuntos
Antivirais/farmacologia , Infecções por Citomegalovirus/terapia , Citomegalovirus/efeitos dos fármacos , Peptídeos/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/isolamento & purificação , Linhagem Celular , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Células Endoteliais/virologia , Fibroblastos/virologia , Humanos , Peptídeos/isolamento & purificação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Recombinantes de Fusão , Vírion
5.
J Gen Virol ; 98(12): 3068-3085, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29165229

RESUMO

Apart from classical antigen-presenting cells (APCs) like dendritic cells and macrophages, there are semiprofessional APCs such as endothelial cells (ECs) and Langerhans' cells. Human cytomegalovirus (HCMV) infects a wide range of cell types including the ECs which are involved in the trafficking and homing of T cells. By investigating the interaction of naïve T cells obtained from HCMV-seronegative umbilical cord blood with autologous HCMV-infected human umbilical vein ECs (HUVECs), we could show that the activation of naïve T cells occurred after 1 day of peripheral blood mononuclear cell (PBMC) exposure to HCMV-infected HUVECs. The percentage of activated T cells increased over time and the activation of naïve T cells was not induced by either autologous uninfected HUVECs or by autologous HCMV-infected fibroblasts. The activation of T cells occurred also when purified T cells were co-cultured with HCMV-infected HUVECs. In addition, in most of the donors only CD8+ T cells were activated, when the purified T cells were exposed to HCMV-infected HUVECs. The activation of naïve T cells was inhibited when the NKG2D receptor was blocked on the surface of T cells and among the different NKG2D ligands, we identified two ligands (ULBP4 and MICA) on HCMV-infected HUVECs which might be the interaction partners of the NKG2D receptor. Using a functional cell culture assay, we could show that these activated naïve T cells specifically inhibited HCMV transmission. Altogether, we identified a novel specific activation mechanism of naïve T cells from the umbilical cord by HCMV-infected autologous HUVECs through interaction with NKG2D.

6.
J Gen Virol ; 97(9): 2376-2386, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27405754

RESUMO

We established a new 'transmission kinetic assay (TKA)' to quantify the human cytomegalovirus (HCMV) transmission between cells in vitro and to phenotypically characterize HCMV strains based on their mode of transmission by flow cytometric analysis. On one hand we used the genetically modified HCMV strain TB40/E-delUL16-GFP, and on the other hand, clinical isolates. When twofold diluted infecting cells were seeded to a constant number of uninfected cells, the transmission of virus on each day (day 0-5) followed a strictly linear pattern, which was characterized by a linear equation. The slope of this linear equation represents 'the number of newly infected cells per infecting cell'. To standardize the TKA, the slopes of the different days were plotted against the corresponding days. This resulted in a new linear equation with a new slope value, which characterizes the transmission kinetics. To differentiate cell-associated and cell-free modes of transmission, we introduced HCMV neutralizing antibodies into the system. The slope was 0.9 (±0.5) when the virus exhibited only cell-associated transmission and was 4.1 (±0.7) when the virus exhibited both modes of transmission. TKA was then applied to different clinical isolates and they were phenotypically characterized based on their modes of transmission. Apart from the quantitative analysis of HCMV transmission and the phenotypical characterization of clinical isolates, the TKA was applied to quantify the inhibition of clinical isolates transmission by immune cells and to study the effect of cytokine (IL-2) on immune cells inhibiting HCMV transmission.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Internalização do Vírus , Liberação de Vírus , Citomegalovirus/imunologia , Citomegalovirus/isolamento & purificação , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Citometria de Fluxo , Humanos , Imunidade Celular , Interleucina-2/metabolismo , Cultura de Vírus
7.
Histochem Cell Biol ; 145(6): 617-27, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26733077

RESUMO

M2 macrophages showed large endocytotic structures, very different from classical macropinosomes that we named megapinosomes. As observed in the scanning electron microscope, megapinosome formation started with a large (diameter of several micrometers) invagination of the plasma membrane. When the invagination was almost completed, the remaining opening was closed by an actinomorphous centripetal arrangement of many (about 50-100) microvilli-like structures. In transmission electron microscopy using high-pressure freezing, we observed that the megapinosome was filled with a trabecular meshwork that originated from the highly structured plasma membrane. The trabecular meshwork was topologically part of the cytosol and separated from the extracellular fluid by a lipid bilayer. According to ultrastructural features, we could define different phases of megapinosome formation and decay. Megapinosomes became more frequent when M2 macrophages were inoculated with human cytomegalovirus. We did not find megapinosome formation in M1 macrophages.


Assuntos
Macrófagos/citologia , Macrófagos/metabolismo , Pinocitose , Células Cultivadas , Humanos , Macrófagos/ultraestrutura , Microscopia Eletrônica de Transmissão
8.
Nat Commun ; 14(1): 1438, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922516

RESUMO

To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.


Assuntos
Tecido Adiposo Branco , Transcriptoma , Humanos , Transcriptoma/genética , Tecido Adiposo Branco/metabolismo , Adipócitos/metabolismo , Perfilação da Expressão Gênica , Adipogenia/genética , Tecido Adiposo
9.
Front Endocrinol (Lausanne) ; 13: 996954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313784

RESUMO

Background: Obesity-associated metabolic complications display sexual dimorphism and can be impacted by cytokines. We previously showed that interleukin-10 (IL-10) was upregulated in white adipose tissue (WAT) of obese women with type 2 diabetes (T2D). Whether this pertains to men is unknown. The aim of this study was to compare the impact of obesity and T2D on WAT IL-10 levels in men versus women. Methods: Plasma and subcutaneous WAT biopsies were obtained from 108 metabolically well-characterized individuals. WAT IL10 expression/secretion and WAT-resident IL-10-secreting macrophage number were measured. Circulating sex hormone levels were correlated to WAT IL10 expression in 22 individuals and sex hormone effects on macrophage IL10 expression were investigated in vitro. Results: Obese women with T2D showed increased IL10 expression/secretion and IL-10-secreting WAT macrophage number compared to other female groups. This difference was absent in men. Non-obese women and men with T2D showed similar IL-10 levels compared to healthy controls, indicating that T2D alone does not regulate IL-10. Although WAT IL10 expression correlated with serum estrone (E1) concentrations, recombinant E1 did not affect macrophage IL10 expression in vitro. Conclusion: WAT IL-10 levels are higher in women with obesity and T2D, but not in men and this effect is primarily attributed to obesity per se. This is less likely to be driven by circulating sex hormones. We propose that the WAT IL-10 might exert protective effects in obesity-associated chronic inflammation in women which could be one of the contributing factors for the decreased morbidity observed in women during obesity than men.


Assuntos
Diabetes Mellitus Tipo 2 , Interleucina-10 , Masculino , Humanos , Feminino , Interleucina-10/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo
10.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33963396

RESUMO

CONTEXT: Healthy hyperplasic (many but smaller fat cells) white adipose tissue (WAT) expansion is mediated by recruitment, proliferation and/or differentiation of new fat cells. This process (adipogenesis) is controlled by transcriptional programs that have been mostly identified in rodents. OBJECTIVE: A systemic investigation of adipogenic human transcription factors (TFs) that are relevant for metabolic conditions has not been revealed previously. METHODS: TFs regulated in WAT by obesity, adipose morphology, cancer cachexia, and insulin resistance were selected from microarrays. Their role in differentiation of human adipose tissue-derived stem cells (hASC) was investigated by RNA interference (RNAi) screen. Lipid accumulation, cell number, and lipolysis were measured for all screened factors (148 TFs). RNA (RNAseq), protein (Western blot) expression, insulin, and catecholamine responsiveness were examined in hASC following siRNA treatment of selected target TFs. RESULTS: Analysis of TFs regulated by metabolic conditions in human WAT revealed that many of them belong to adipogenesis-regulating pathways. The RNAi screen identified 39 genes that affected fat cell differentiation in vitro, where 11 genes were novel. Of the latter JARID2 stood out as being necessary for formation of healthy fat cell metabolic phenotype by regulating expression of multiple fat cell phenotype-specific genes. CONCLUSION: This comprehensive RNAi screening in hASC suggests that a large proportion of WAT TFs that are impacted by metabolic conditions might be important for hyperplastic adipose tissue expansion. The screen also identified JARID2 as a novel TF essential for the development of functional adipocytes.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Complexo Repressor Polycomb 2/genética , Interferência de RNA/fisiologia , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Adipócitos/química , Adipócitos/patologia , Tecido Adiposo Branco/química , Tecido Adiposo Branco/patologia , Adolescente , Sequência de Bases , Diferenciação Celular/genética , Células Cultivadas , Feminino , Neoplasias Gastrointestinais , Regulação da Expressão Gênica , Humanos , Hiperplasia/genética , Resistência à Insulina/genética , Masculino , Obesidade/genética , Complexo Repressor Polycomb 2/fisiologia , Células-Tronco/química , Fatores de Transcrição/fisiologia
11.
Microorganisms ; 7(11)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717670

RESUMO

The recombination-activating genes (RAGs) and the DNA cross-link repair 1C gene (DCLRE1C) encode the enzymes RAG1, RAG2 and Artemis. They are critical components of the V(D)J recombination machinery. V(D)J recombination is well known as a prerequisite for the development and antigen diversity of T and B cells. New findings suggested that RAG deficiency impacts the cellular fitness and function of murine NK cells. It is not known whether NK cells from severe combined immunodeficiency (SCID) patients with defective RAGs or DCLRE1C (RAGs-/DCLRE1C--NK) are active against virus infections. Here, we evaluated the anti-HCMV activity of RAGs-/DCLRE1C--NK cells. NK cells from six SCID patients were functional in inhibiting HCMV transmission between cells in vitro. We also investigated the expansion of HCMV-induced NK cell subset in the RAG- or DCLRE1C-deficient patients. A dynamic expansion of NKG2C+ NK cells in one RAG-2-deficient patient was observed post HCMV acute infection. Our study firstly reveals the antiviral activity of human RAGs-/ DCLRE1C--NK cells.

12.
Biotechniques ; 63(5): 205-214, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29185920

RESUMO

For immunological research on the human cytomegalovirus (HCMV), a virus that combines the broad cell tropism of clinical isolates, efficient replication in cell culture, the complete set of MHC-I modulator genes, and suitability for genetic engineering is desired. Here, we aimed to generate a genetically complete derivative of HCMV strain TB40/E as a bacterial artificial chromosome (BAC) with a self-excisable BAC cassette. The BAC cassette was inserted into the US2-US6 gene region (yielding TB40-BACKL7), relocated into the UL73/UL74 region with modifications that favor excision of the BAC cassette during replication in fibroblasts, and finally the US2-US6 region was restored, resulting in BAC clone TB40-BACKL7-SE When this BAC clone was transfected into fibroblasts at efficiencies >0.1%, replicating virus that had lost the BAC cassette appeared within 2 weeks after transfection, grew to high titers, and displayed the broad tropism of the parental virus. The degree of MHC-I down-regulation by this virus was consistent with functional restoration of US2-US6. To enable detection of infected cells by flow cytometry, an enhanced green fluorescent protein (EGFP)-expression cassette was inserted downstream of US34A, yielding the fluorescent virus RV-TB40-BACKL7-SE-EGFP.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Citomegalovirus/genética , Genoma Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Clonagem Molecular , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Fibroblastos/virologia , Prepúcio do Pênis/citologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Proteínas de Fluorescência Verde/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Cultura Primária de Células , Transfecção , Tropismo Viral , Replicação Viral , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA