Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(4): 928-943.e22, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30712874

RESUMO

Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.


Assuntos
Reprogramação Celular/genética , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(34): e2207392119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969771

RESUMO

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Fatores de Transcrição , Simulação por Computador , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Blood ; 139(16): 2534-2546, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35030251

RESUMO

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


Assuntos
Anemia , Fator de Transcrição GATA1 , Diferenciação Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Humanos
6.
Nature ; 561(7721): 132-136, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150775

RESUMO

The human genome contains thousands of long non-coding RNAs1, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen2-7. A specific long non-coding RNA-non-coding RNA activated by DNA damage (NORAD)-has recently been shown to be required for maintaining genomic stability8, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex-which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)-that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19-CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression-which represent phenotypes that are mechanistically linked to TOP1 and PRPF19-CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Instabilidade Genômica , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular , Segregação de Cromossomos , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Espectrometria de Massas , Proteínas Nucleares/metabolismo , Ligação Proteica , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/genética , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(52): 33404-33413, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376219

RESUMO

Single-cell quantification of RNAs is important for understanding cellular heterogeneity and gene regulation, yet current approaches suffer from low sensitivity for individual transcripts, limiting their utility for many applications. Here we present Hybridization of Probes to RNA for sequencing (HyPR-seq), a method to sensitively quantify the expression of hundreds of chosen genes in single cells. HyPR-seq involves hybridizing DNA probes to RNA, distributing cells into nanoliter droplets, amplifying the probes with PCR, and sequencing the amplicons to quantify the expression of chosen genes. HyPR-seq achieves high sensitivity for individual transcripts, detects nonpolyadenylated and low-abundance transcripts, and can profile more than 100,000 single cells. We demonstrate how HyPR-seq can profile the effects of CRISPR perturbations in pooled screens, detect time-resolved changes in gene expression via measurements of gene introns, and detect rare transcripts and quantify cell-type frequencies in tissue using low-abundance marker genes. By directing sequencing power to genes of interest and sensitively quantifying individual transcripts, HyPR-seq reduces costs by up to 100-fold compared to whole-transcriptome single-cell RNA-sequencing, making HyPR-seq a powerful method for targeted RNA profiling in single cells.


Assuntos
Sondas de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização de Ácido Nucleico , RNA/metabolismo , Análise de Célula Única , Animais , Sistemas CRISPR-Cas/genética , Expressão Gênica , Humanos , Íntrons/genética , Células K562 , Rim/citologia , Camundongos , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 112(35): 10890-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283346

RESUMO

Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (-24 h) or double-dose (-12 h, +48 h) administration (P < 0.001). A single dose of VIS410 at 50 mg/kg (-12 h) combined with oseltamivir at 50 mg/kg (-12 h, twice daily for 7 d) in C57BL/6 mice infected with A/Shanghai 2/2013 (H7N9) resulted in significant decreased lung viral load (P = 0.002) and decreased lung cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Amplamente Neutralizantes , Humanos , Influenza Humana/terapia , Camundongos , Camundongos Endogâmicos
9.
PLoS Genet ; 9(8): e1003725, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990805

RESUMO

The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Histonas/genética , Animais , Asparagina/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Glicina/genética , Camundongos , Nucleossomos/genética , Regiões Promotoras Genéticas , Serina/genética
10.
Circ Res ; 112(7): 992-1003, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23420833

RESUMO

RATIONALE: Increased neutrophil and monocyte counts are often associated with an increased risk of atherosclerosis, but their relationship to insulin sensitivity is unknown. OBJECTIVE: To investigate the contribution of forkhead transcription factors (FoxO) in myeloid cells to neutrophil and monocyte counts, atherosclerosis, and systemic insulin sensitivity. METHODS AND RESULTS: Genetic ablation of the 3 genes encoding FoxO isoforms 1, 3a, and 4, in myeloid cells resulted in an expansion of the granulocyte/monocyte progenitor compartment and was associated with increased atherosclerotic lesion formation in low-density lipoprotein receptor knockout mice. In vivo and ex vivo studies indicate that FoxO ablation in myeloid cells increased generation of reactive oxygen species. Accordingly, treatment with the antioxidant N-acetyl-l-cysteine reversed the phenotype, normalizing atherosclerosis. CONCLUSIONS: Our data indicate that myeloid cell proliferation and oxidative stress can be modulated via the FoxO branch of insulin receptor signaling, highlighting a heretofore-unknown link between insulin sensitivity and leukocytosis that can affect the predisposition to atherosclerosis.


Assuntos
Aterosclerose/fisiopatologia , Fatores de Transcrição Forkhead/genética , Monócitos/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo/fisiologia , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/fisiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas de Ciclo Celular , Cisteína/metabolismo , Feminino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Sequestradores de Radicais Livres/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Insulina/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/patologia , Neutrófilos/patologia , Nitrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tirosina/metabolismo
11.
BMC Biotechnol ; 13: 34, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23587408

RESUMO

BACKGROUND: The ongoing global efforts to control influenza epidemics and pandemics require high-throughput technologies to detect, quantify, and functionally characterize viral isolates. The 2009 influenza pandemic as well as the recent in-vitro selection of highly transmissible H5N1 variants have only increased existing concerns about emerging influenza strains with significantly enhanced human-to-human transmissibility. High-affinity binding of the virus hemagglutinin to human receptor glycans is a highly sensitive and stringent indicator of host adaptation and virus transmissibility. The surveillance of receptor-binding characteristics can therefore provide a strong additional indicator for the relative hazard imposed by circulating and newly emerging influenza strains. RESULTS: Streptavidin-coated microspheres were coated with selected biotinylated glycans to mimic either human or avian influenza host-cell receptors. Such glycospheres were used to selectively capture influenza virus of diverse subtypes from a variety of samples. Bound virus was then detected by fluorescently labelled antibodies and analyzed by quantitative flow cytometry. Recombinant hemagglutinin, inactivated virus, and influenza virions were captured and analyzed with regards to receptor specificity over a wide range of analyte concentration. High-throughput analyses of influenza virus produced dose-response curves that allow for functional assessment of relative receptor affinity and thus transmissibility. CONCLUSIONS: Modular glycosphere assays for high-throughput functional characterization of influenza viruses introduce an important tool to augment the surveillance of clinical and veterinarian influenza isolates with regards to receptor specificity, host adaptation, and virus transmissibility.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Microesferas , Orthomyxoviridae/isolamento & purificação , Orthomyxoviridae/metabolismo , Polissacarídeos/metabolismo , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/química , Biotina/química , Aves , Hemaglutininas/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/metabolismo , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/metabolismo , Polissacarídeos/análise , Estreptavidina/química , Ligação Viral
12.
Nature ; 447(7148): 1116-20, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17515919

RESUMO

Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.


Assuntos
Resistência à Insulina/fisiologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/metabolismo , PPAR gama/metabolismo , Adiponectina/sangue , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/fisiologia , Animais , Linhagem Celular , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Predisposição Genética para Doença , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Insulina/administração & dosagem , Insulina/metabolismo , Insulina/farmacologia , Leishmania major/imunologia , Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , PPAR gama/deficiência , PPAR gama/genética , Aumento de Peso/efeitos dos fármacos
13.
Commun Chem ; 6(1): 244, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945793

RESUMO

The application of machine learning (ML) models to optimize antibody affinity to an antigen is gaining prominence. Unfortunately, the small and biased nature of the publicly available antibody-antigen interaction datasets makes it challenging to build an ML model that can accurately predict binding affinity changes due to mutations (ΔΔG). Recognizing these inherent limitations, we reformulated the problem to ask whether an ML model capable of classifying deleterious vs non-deleterious mutations can guide antibody affinity maturation in a practical setting. To test this hypothesis, we developed a Random Forest classifier (Antibody Random Forest Classifier or AbRFC) with expert-guided features and integrated it into a computational-experimental workflow. AbRFC effectively predicted non-deleterious mutations on an in-house validation dataset that is free of biases seen in the publicly available training datasets. Furthermore, experimental screening of a limited number of predictions from the model (<10^2 designs) identified affinity-enhancing mutations in two unrelated SARS-CoV-2 antibodies, resulting in constructs with up to 1000-fold increased binding to the SARS-COV-2 RBD. Our findings indicate that accurate prediction and screening of non-deleterious mutations using machine learning offers a powerful approach to improving antibody affinity.

14.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 8): 960-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22868761

RESUMO

Y-family DNA polymerases (dPols) have evolved to carry out translesion bypass to rescue stalled replication; prokaryotic members of this family also participate in the phenomenon of adaptive mutagenesis to relieve selection pressure imposed by a maladapted environment. In this study, the first structure of a member of this family from a prokaryote has been determined. The structure of MsPolIV, a Y-family dPol from Mycobacterium smegmatis, shows the presence of the characteristic finger, palm and thumb domains. Surprisingly, the electron-density map of the intact protein does not show density for the PAD region that is unique to members of this family. Analysis of the packing of the molecules in the crystals showed the existence of large solvent-filled voids in which the PAD region could be located in multiple conformations. In line with this observation, analytical gel-filtration and dynamic light-scattering studies showed that MsPolIV undergoes significant compaction upon DNA binding. The PAD region is known to insert into the major groove of the substrate DNA and to play a major role in shaping the active site. Comparison with structures of other Y-family dPols shows that in the absence of tertiary contacts between the PAD domain and the other domains this region has the freedom to adopt multiple orientations. This structural attribute of the PAD will allow these enzymes to accommodate the alterations in the width of the DNA double helix that are necessary to achieve translesion bypass and adaptive mutagenesis and will also allow regulation of their activity to prevent adventitious error-prone DNA synthesis.


Assuntos
DNA Polimerase beta/química , Mycobacterium smegmatis/química , Domínio Catalítico , Cromatografia em Gel , DNA/química , Elétrons , Luz , Conformação Molecular , Mutagênese , Conformação Proteica , Reprodutibilidade dos Testes , Espalhamento de Radiação , Solventes/química
15.
Sci Rep ; 12(1): 2594, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173180

RESUMO

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Modelos Imunológicos , SARS-CoV-2/imunologia , Animais , Cães , Reposicionamento de Medicamentos , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Terapia de Alvo Molecular , Testes de Neutralização , Polissacarídeos/metabolismo
16.
Front Immunol ; 13: 1063002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703993

RESUMO

Bispecific antibodies (BsAbs) form an exciting class of bio-therapeutics owing to their multispecificity. Although numerous formats have been developed, generation of hetero-tetrameric IgG1-like BsAbs having acceptable safety and pharmacokinetics profiles from a single cell culture system remains challenging due to the heterogeneous pairing between the four chains. Herein, we employed a structure-guided approach to engineer mutations in the constant domain interfaces (CH1-CL and CH3-CH3) of heavy and κ light chains to prevent heavy-light mispairing in the antigen binding fragment (Fab) region and heavy-heavy homodimerization in the Fc region. Transient co-transfection of mammalian cells with heavy and light chains of pre-existing antibodies carrying the engineered constant domains generates BsAbs with percentage purity ranging from 78% to 85%. The engineered BsAbs demonstrate simultaneous binding of both antigens, while retaining the thermal stability, Fc-mediated effector properties and FcRn binding properties of the parental antibodies. Importantly, since the variable domains were not modified, the mutations may enable BsAb formation from antibodies belonging to different germline origins and isotypes. The rationally designed mutations reported in this work could serve as a starting point for generating optimized solutions required for large scale production.


Assuntos
Anticorpos Biespecíficos , Animais , Cadeias kappa de Imunoglobulina/genética , Transfecção , Imunoglobulina G , Mamíferos
17.
J Lipid Res ; 51(4): 709-19, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19801371

RESUMO

Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two amino terminal 6-histidine tags. Recombinant CGI-58 displayed acyl-CoA-dependent acyltransferase activity to lysophosphatidic acid, but not to other lysophospholipid or neutral glycerolipid acceptors. Production of phosphatidic acid increased with time and increasing concentrations of recombinant CGI-58 and was optimal between pH 7.0 and 8.5. The enzyme showed saturation kinetics with respect to 1-oleoyl-lysophosphatidic acid and oleoyl-CoA and preference for arachidonoyl-CoA and oleoyl-CoA. The enzyme showed slight preference for 1-oleoyl lysophosphatidic acid over 1-palmitoyl, 1-stearoyl, or 1-arachidonoyl lysophosphatidic acid. Recombinant CGI-58 showed intrinsic fluorescence for tryptophan that was quenched by the addition of 1-oleoyl-lysophosphatidic acid, oleoyl-CoA, arachidonoyl-CoA, and palmitoyl-CoA, but not by lysophosphatidyl choline. Expression of CGI-58 in fibroblasts from humans with CDS increased the incorporation of radiolabeled fatty acids released from the lipolysis of stored triacylglycerols into phospholipids. CGI-58 is a CoA-dependent lysophosphatidic acid acyltransferase that channels fatty acids released from the hydrolysis of stored triacylglycerols into phospholipids.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Lisofosfolipídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/isolamento & purificação , Motivos de Aminoácidos , Animais , Células Cultivadas , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo Lipídico/enzimologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Camundongos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Síndrome
18.
Mol Cell Biochem ; 326(1-2): 15-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19116774

RESUMO

Perilipin A is the most abundant protein associated with the lipid droplets of adipocytes and functions to control both basal and stimulated lipolysis. Under basal or fed conditions, perilipin A shields stored triacylglycerols from cytosolic lipases, thus promoting triacylglycerol storage. When catecholamines bind to cell surface receptors to initiate signals that activate cAMP-dependent protein kinase (PKA), phosphorylated perilipin A facilitates maximal lipolysis. Mutagenesis studies have revealed that central sequences of moderately hydrophobic amino acids are required to target nascent perilipin A to lipid droplets and provide an anchor into the hydrophobic environment of lipid droplets. Sequences of amino acids in the unique carboxyl terminus of perilipin A and those in amino terminal sequences flanking the first hydrophobic stretch are required for the barrier function of perilipin A in promoting triacylglycerol storage. Site-directed mutagenesis studies of serine residues within six PKA consensus sites of perilipin A reveal functions for phosphorylation of at least three of the sites. Phosphorylation of one or more of the serines within three amino terminal PKA sites is required to facilitate hormone-sensitive lipase access to lipid substrates. Phosphorylation of serines within two carboxyl terminal sites is also required for maximal lipolysis. Phosphorylation of serine 492 (site 5) triggers a massive remodeling of lipid droplets, whereby large peri-nuclear lipid droplets fragment into myriad lipid micro-droplets that scatter throughout the cytoplasm. We hypothesize that perilipin A binds accessory proteins to provide assistance in carrying out these functions.


Assuntos
Fosfoproteínas/química , Triglicerídeos/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipólise , Modelos Genéticos , Mutagênese Sítio-Dirigida , Perilipina-1 , Fosfoproteínas/metabolismo , Fosforilação , Relação Estrutura-Atividade
19.
Nat Genet ; 51(12): 1664-1669, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784727

RESUMO

Enhancer elements in the human genome control how genes are expressed in specific cell types and harbor thousands of genetic variants that influence risk for common diseases1-4. Yet, we still do not know how enhancers regulate specific genes, and we lack general rules to predict enhancer-gene connections across cell types5,6. We developed an experimental approach, CRISPRi-FlowFISH, to perturb enhancers in the genome, and we applied it to test >3,500 potential enhancer-gene connections for 30 genes. We found that a simple activity-by-contact model substantially outperformed previous methods at predicting the complex connections in our CRISPR dataset. This activity-by-contact model allows us to construct genome-wide maps of enhancer-gene connections in a given cell type, on the basis of chromatin state measurements. Together, CRISPRi-FlowFISH and the activity-by-contact model provide a systematic approach to map and predict which enhancers regulate which genes, and will help to interpret the functions of the thousands of disease risk variants in the noncoding genome.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Animais , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica , Desacetilase 6 de Histona/genética , Humanos , Hibridização in Situ Fluorescente , Células K562 , Camundongos , Modelos Genéticos , RNA Guia de Cinetoplastídeos
20.
Chem Biol ; 14(5): 553-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17524986

RESUMO

Bioreductive alkylating agents are an important class of clinical antitumor antibiotics that crosslink and monoalkylate DNA. Here, we use a synthetic, photochemically activated derivative of FR400482 to investigate the molecular mechanism of this class of drugs in a biologically relevant context. We find that the organization of DNA into nucleosomes effectively protects it against drug-mediated crosslinking, while permitting monoalkylation. This modification has the potential to lead to the formation of covalent crosslinks between chromatin and nuclear proteins. Using in vitro approaches, we found that interstrand crosslinking of free DNA results in a significant decrease in basal and activated transcription. Finally, crosslinked plasmid DNA is inefficiently assembled into chromatin. Our studies suggest pathways for the clinical effectiveness of this class of reagents.


Assuntos
Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Cromatina/química , Cromatina/efeitos dos fármacos , Alquilação , Reagentes de Ligações Cruzadas/química , DNA/química , DNA/genética , DNA Satélite/química , DNA Satélite/genética , Eletroforese em Gel de Ágar , Histonas/química , Nucleossomos/química , Nucleossomos/metabolismo , Oxazinas/química , Fotoquímica , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA