Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6253, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069208

RESUMO

Heat transport in a 2D steady radiative boundary layer with Maxwell fluid flow and the influence of heat generation and MHD has been studied across a porous inclined vertical plate. Through similarity transformation, the mathematical modelling is converted to ODEs, and the built-in solver Bvp4c via MATLAB is used to solve. The linear movement of an inclined porous plate introduced the flow. The MHD (M), Prandtl number (Pr), radiation (Rd), Rayleigh number (Ra), local Nusselt number (Nux), angle of inclination (γ), and material relaxation time (ß) have a considerable impact on the flow field as a result. The local Nusselt numbers and the skin friction coefficient are also given as numbers. The validation with the numerical solution is presented. The results are shown, and a thorough physical analysis has been done. The temperature of the fluid rises due to the greater electric field, increasing the heat transfer on the inclined plate. However, skin friction increases dramatically as the heat radiation parameter rises. The critical findings of this study are that the temperature profile increases and the velocity profile lower as the inclination angle increases. The Maxwell fluid parameter raises the velocity profile as well.

2.
Nanoscale Adv ; 5(22): 6102-6114, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941953

RESUMO

This study examines the numerical representation of fluid flow on the Maxwell model in a double-diffusive boundary layer over a horizontal plate. The investigation incorporates slip conditions, encompassing momentum slip, thermal slip, and suction parameters. Moreover, the study includes the inspiration of thermal radiation, heat generation, and mass transfer. The governing partial differential equations (pertaining to momentum, continuity, energy transport, and mass transport) are transformed into ordinary differential equations (ODEs) using appropriate similarity transformations. To solve these equations in conjunction with suitable boundary conditions, the bvp4c inbuilt software is implemented. This is achieved through the shooting approach employed in MATLAB. A comprehensive agreement between the numerical technique and previously published findings demonstrates its efficacy. The outcomes are presented through graphical representations and tables, showcasing various parameters such as momentum slip, temperature slip, local Nusselt number, Sherwood number, and suction parameter. The primary motivation of this research lies in investigating the behaviour of Maxwell fluid flow in the absence of slip conditions. The study of Maxwell fluid flow over a flat plate with the combined effects of suction, thermal slip, and momentum slip conditions has a wide range of practical applications that span multiple industries, contributing to improved designs, efficiency, and understanding of fluid behaviour in various systems. The main aim of this study is to present streamlined results under varying conditions, explicitly investigating the influence of suction effects and slip conditions on the flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA